Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polydimethylsiloxanes oxidation

Another approach is to use the LB film as a template to limit the size of growing colloids such as the Q-state semiconductors that have applications in nonlinear optical devices. Furlong and co-workers have successfully synthesized CdSe [186] and CdS [187] nanoparticles (<5 nm in radius) in Cd arachidate LB films. Finally, as a low-temperature ceramic process, LB films can be converted to oxide layers by UV and ozone treatment examples are polydimethylsiloxane films to make SiO [188] and Cd arachidate to make CdOjt [189]. [Pg.562]

Surface active agents are important components of foam formulations. They decrease the surface tension of the system and facilitate the dispersion of water in the hydrophobic resin. In addition they can aid nucleation, stabilise the foam and control cell structure. A wide range of such agents, both ionic and non-ionic, has been used at various times but the success of the one-shot process has been due in no small measure to the development of the water-soluble polyether siloxanes. These are either block or graft copolymers of a polydimethylsiloxane with a polyalkylene oxide (the latter usually an ethylene oxide-propylene oxide copolymer). Since these materials are susceptible to hydrolysis they should be used within a few days of mixing with water. [Pg.797]

Although each of these cyclic siloxane monomers can be polymerized separately to synthesize the respective homopolymers, in practice they are primarily used to modify and further improve some specific properties of polydimethylsiloxanes. The properties that can be changed or modified by the variations in the siloxane backbone include the low temperature flexibility (glass transition temperature, crystallization and melting behavior), thermal, oxidation, and radiation stability, solubility characteristics and chemical reactivity. Table 9 summarizes the effect of various substituents on the physical properties of resulting siloxane homopolymers. The... [Pg.23]

The most commonly used siloxane modifiers are those having phenyl, trifluoro-propyl and cyanopropyl substituents. Introduction of phenyl units into the polydimethylsiloxane backbone either in the form of methylphenylsiloxane or diphenyl-siloxane increases the thermal and oxidative stability, glass transition temperature and the organic solubility characteristics of the resulting copolymers. At low levels (5-10 percent by weight) of incorporation, bulky phenyl groups also break up the regularity of polydimethylsiloxane chains and inhibit the crystallization (Tc... [Pg.24]

Small quantities can be distilled at about 75°C/1.3 mbar, but larger amounts are liable to explode violently owing to local overheating [1], An attempt to prepare an analogous poly(dimethylsilyl) chromate by heating a polydimethylsiloxane with chromium trioxide at 140°C exploded violently after 20min at this temperature [2], See related alkylsilanes, metal oxides... [Pg.844]

Miscellaneous compounds. Other materials used include FC-171, fluorocarbon surfactant, 3M Industrial Chemical Products Division, St. Paul MN 55144-1000 Byk 306, Bykchemie USA, Wallingford, CT 06492 Polyol (poly-caprolactonetriol a polyester polyol), and Silwet L-7602 (polyalkylene oxide modified polydimethylsiloxane), both from Union Carbide Chemicals and Plastics Co., Inc., Danbury, CT 06817-0001. [Pg.221]

An atomic absorption method was published by AOAC Int. (2000) for determination of the anti-foaming agent polydimethylsiloxane in pineapple juice, that is based on extraction with 4-methyl-2-pentanone and aspiration into a nitrous oxide/acetylene flame. A silicone lamp was used for detection. [Pg.126]

Recently, Genzer and coworkers [85] presented an interesting new approach for the preparation of stable silane-based SAM systems. As a substrate, cross-linked polydimethylsiloxane (PDMS) was oxidized by UV/ozone treatment to yield a thin sihcon dioxide surface. The surface was then treated with fluorinated alkyltrichlo-rosilanes from the gas phase while being mechanically stretched by a certain length Ax. After modification, the elastomer was allowed to relax resulting in a mecdianically assembled monolayer (MAM) at the surface (Fig. 9.8). [Pg.381]

Polysiloxanes, also called silicones, are characterized by combinations of chemical, mechanical, and electrical properties which taken together are not common to any other commercially available class of polymers. They exhibit relatively high thermal and oxidative stability, low power loss, high dielectric strength, and unique rheological properties, and are relatively inert to most of the ionic reagents. Almost all of the commercially utilized siloxanes are based on polydimethylsiloxane with trimethylsiloxy end groups. They have the widest use... [Pg.365]

The thermal stability, as well as structure-related properties, such as resistivity and elasticity, of polysiloxanes is dependent on the nature of the pendant groups on the silicon atoms. Thus high-molecular-weight polydimethylsiloxanes are attacked at temperatures near 200 °C in the presence of oxygen, but substitution of a phenyl group for one methyl group raises the oxidative stability to 225 °C. [Pg.180]

In their investigation of polydimethylsiloxane and polyethylene oxide) in solution with various solvents, Tanner, Liu, and Anderson40 extrapolated the observed polymer diffusion coefficients to zero polymer concentration c. They applied Flory s theory of dilute solutions 45) to the case of diffusion ... [Pg.14]

In his PGSE study of polyethylene oxide and polydimethylsiloxane in QHg and CHC13, Tanner 39) also measured the diffusion of a fixed fraction of solvent in the polymers. He concluded that their diffusion rate in polymers of molecular weight lower than their own was approximately equal to that of the polymers. As the polymer molecular weight exceeded that of the solvent, the solvent diffusion rate approached a constant value, independent of polymer molecular weight. Tanner offered semiempirical explanations for this effect. [Pg.19]

POLYDIMETHYLSILOXANE. A silicone polymer developed for use as a dielectric coolant and in solar energy installations, It also may have a number of other uses. It is stated to be highly resistant to oxidation and biodegradation by microorganisms. It is degradable when exposed to a soil environment by chemical reaction with clays and water, by which it is decomposed to silicic acid, carbon dioxide, and water. [Pg.1337]

The interfacial tension is a key property for describing the formation of emulsions and microemulsions (Aveyard et al., 1990), including those in supercritical fluids (da Rocha et al., 1999), as shown in Figure 8.3, where the v-axis represents a variety of formulation variables. A minimum in y is observed at the phase inversion point where the system is balanced with respect to the partitioning of the surfactant between the phases. Here, a middle-phase emulsion is present in equilibrium with excess C02-rich (top) and aqueous-rich (bottom) phases. Upon changing any of the formulation variables away from this point—for example, the hydrophilie/C02-philic balance (HCB) in the surfactant structure—the surfactant will migrate toward one of the phases. This phase usually becomes the external phase, according to the Bancroft rule. For example, a surfactant with a low HCB, such as PFPE COO NH4+ (2500 g/mol), favors the upper C02 phase and forms w/c microemulsions with an excess water phase. Likewise, a shift in formulation variable to the left would drive the surfactant toward water to form a c/w emulsion. Studies of y versus HCB for block copolymers of propylene oxide, and ethylene oxide, and polydimethylsiloxane (PDMS) and ethylene oxide, have been used to understand microemulsion and emulsion formation, curvature, and stability (da Rocha et al., 1999). [Pg.137]

Three classes of PSAs used most widely in transdermal systems are polyisobutylene (PIB), polyacrylate, and polydimethylsiloxane (silicone). More recently, hydrophilic adhesive compositions, hydrogels composed of high-molecular-weight polyvinylpyrrolidon (PVP) and oligometric polyethylene oxide (PEO), have been shown to be compatible with a broad range of drugs and are used in several commercial products.60... [Pg.125]

Fig. 1 SEM image of sub-micron periodicity wrinkles created by plasma oxidation of strained polydimethylsiloxane and subsequent stress release... Fig. 1 SEM image of sub-micron periodicity wrinkles created by plasma oxidation of strained polydimethylsiloxane and subsequent stress release...

See other pages where Polydimethylsiloxanes oxidation is mentioned: [Pg.463]    [Pg.200]    [Pg.359]    [Pg.8]    [Pg.21]    [Pg.24]    [Pg.44]    [Pg.52]    [Pg.75]    [Pg.104]    [Pg.27]    [Pg.664]    [Pg.665]    [Pg.670]    [Pg.678]    [Pg.967]    [Pg.218]    [Pg.114]    [Pg.62]    [Pg.303]    [Pg.10]    [Pg.2217]    [Pg.2228]    [Pg.2231]    [Pg.2235]    [Pg.2238]    [Pg.86]    [Pg.195]    [Pg.123]   
See also in sourсe #XX -- [ Pg.2231 ]

See also in sourсe #XX -- [ Pg.2231 ]




SEARCH



Polydimethylsiloxane

Polydimethylsiloxanes

Polydimethylsiloxanes oxidation resistance

© 2024 chempedia.info