Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly -rich

Katsuya et al. [5 published the oxidative coupling (agent copper(II) chloride/ aluminum chloride) of electron-rich benzene derivatives such as 2,5-dimethoxy-benzene to poly(2,5-dimethoxy-1,4-phenylene) (2). The resulting polymer is only soluble in concentrated sulfuric acid, and is fusible at 320r C. Ueda et al. 16] described the coupling of the same monomer with iron(III) chloride/aluminum chloride. The polymers obtained by the authors were not thoroughly para-linked. [Pg.32]

The fraction of head-to-head linkages in the poly(fluoro-olefms) increases in the series PVF2 < PVF PVF3 (Tabic 4.2). This can be rationalized in terms of the propensity of electrophilic radicals to add preferentially to the more electron rich end of monomers (i.e, that with the lowest number of fluorines). This trend is also seen in the reactions of trifluoromethyl radicals wilh the fluoro-olefins (see 2.3). [Pg.181]

In contrast, the synthesis of tetraethynylethene (TEE, C10H4) was described in 1991 and, since then, a rich variety of cyclic and acyclic molecular scaffolds incorporating this carbon-rich molecule as a construction module have been prepared. The majority of these compounds, such as the expanded radialenes or the oligomers and polymers of the poly(triacetylene) type, are highly stable and... [Pg.73]

Figure 39-19. Structure of a typical eukaryotic mRNA showing elements that are involved in regulating mRNA stability. The typical eukaryotic mRNA has a 5 noncoding sequence (5 NCS), a coding region, and a 3 NCS. All are capped at the 5 end, and most have a polyadenylate sequence at the 3 end. The 5 cap and 3 poly(A) tail protect the mRNA against exonuclease attack. Stem-loop structures in the 5 and 3 NCS, features in the coding sequence, and the AU-rich region in the 3 NCS are thought to play roles in mRNA stability. Figure 39-19. Structure of a typical eukaryotic mRNA showing elements that are involved in regulating mRNA stability. The typical eukaryotic mRNA has a 5 noncoding sequence (5 NCS), a coding region, and a 3 NCS. All are capped at the 5 end, and most have a polyadenylate sequence at the 3 end. The 5 cap and 3 poly(A) tail protect the mRNA against exonuclease attack. Stem-loop structures in the 5 and 3 NCS, features in the coding sequence, and the AU-rich region in the 3 NCS are thought to play roles in mRNA stability.
Anionic poly(amidoamine) (PAMAM) dendrimer was selected as a model of the soluble acidic-rich proteins to prepare CaC03 film on a poly(ethylenimine) film [49]. The CaCOj/polylethylenimine) composite film was obtained in the... [Pg.155]

By using thermosensitive poly-acrylamides, it is possible to prepare cubic Pt nanocrystals (with predominant (1 0 0) facets) and tetrahedral Pt nanocrystals (rich in (111) facets). These Pt nanocrystals can be supported on oxide (alumina) and used as a catalyst in structure-sensitive reaction, NO reduction by CH4. The results proved that morphologically controlled metal nanoparticles supported on adequate support give us a novel tool to connect the worlds of surface science with that of real catalysis. [Pg.305]

Further evidence for these a-helix ROA band assignments in the extended amide III region comes from the ROA spectrum of poly-L-alanine dissolved in a mixture of chloroform (70%) and dichloracetic acid (30%), known to promote a-helix formation (Fasman, 1987), which shows strong positive ROA bands at 1305 and 1341 cm-1 (unpublished results), and of the cv-helix forming alanine-rich peptide AK21 (sequence Ac-AAKAAAAKAAAAKAAAAKAGY-NHg) in aqueous solution which shows strong positive ROA bands at 1309 and 1344 cm-1 (Blanch et al., 2000). [Pg.87]

The mechanism of the intracellular degradation of poly(HA) by bacteria, i.e., the mobilization of a previously accumulated polyester, is poorly understood (see also the chapter by Babel et al. in this book). Most of the research on intracellular poly(3HB) mobilization was done more than 30 years ago. Lemoigne observed in 1925 that 3-hydroxybutyrate was the main product of anaerobic breakdown of poly(3HB) in Bacillus M [12,137]. Macrae and Wilkinson [138, 139] noticed a reduction of the poly(3HB) content of Bacillus megaterium upon aerobic incubation of poly(3HB)-rich cells in phosphate buffer. The authors found that autolysis of poly(3HB)-rich cells occurred later and to a minor extent compared to poly(3HB)-poor cells and proposed that poly(3HB) might... [Pg.313]

Mao J, Flundal L, Thompson M, Schmidt-Rohr K (2002) Correlation of poly(methylene)-rich amorphous aliphatic domains in humic substances with sorption of a nonpolar organic contaminant, phenanthrene. Environ Sci Technol 36 929-936... [Pg.141]


See other pages where Poly -rich is mentioned: [Pg.2585]    [Pg.57]    [Pg.260]    [Pg.466]    [Pg.225]    [Pg.41]    [Pg.84]    [Pg.600]    [Pg.165]    [Pg.26]    [Pg.353]    [Pg.232]    [Pg.384]    [Pg.370]    [Pg.304]    [Pg.181]    [Pg.103]    [Pg.112]    [Pg.222]    [Pg.154]    [Pg.137]    [Pg.137]    [Pg.300]    [Pg.305]    [Pg.316]    [Pg.217]    [Pg.198]    [Pg.67]    [Pg.118]    [Pg.5]    [Pg.145]    [Pg.405]    [Pg.891]    [Pg.25]    [Pg.285]    [Pg.70]    [Pg.789]    [Pg.163]    [Pg.57]    [Pg.256]    [Pg.6]    [Pg.150]   


SEARCH



Poly -rich extraction

© 2024 chempedia.info