Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly 3-methyl-butene

Polyethylene Polypropylene Poly-3-methyl-Butene 1 Poly-4-methyl- pent ne t Polystyrene ... [Pg.102]

The synthesis of isotactic polymers of higher a-olefins was discovered in 1955, simultaneously with the synthesis of isotactic PP (1,2) syndiotactic polymers of higher a-olefins were first prepared in 1990 (3,4). The first commercial production of isotactic poly(l-butene) [9003-29-6] (PB) and poly(4-methyl-l-pentene) [9016-80-2] (PMP) started in 1965 (5). [Pg.425]

The most radiation-stable poly(olefin sulfone) is polyethylene sulfone) and the most radiation-sensitive is poly(cyclohexene sulfone). In the case of poly(3-methyl-l-butene sulfone) there is very much isomerization of the olefin formed by radiolysis and only 58.5% of the olefin formed is 3-methyl-l-butene. The main isomerization product is 2-methyl-2-butene (37.3% of the olefin). Similar isomerization, though to a smaller extent, occurs in poly(l-butene sulfone) where about 10% of 2-butene is formed. The formation of the olefin isomer may occur partly by radiation-induced isomerization of the initial olefin, but studies with added scavengers73 do not support this as the major source of the isomers. The presence of a cation scavenger, triethylamine, eliminates the formation of the isomer of the parent olefin in both cases of poly(l-butene sulfone) and poly(3-methyl-1-butene sulfone)73 indicating that the isomerization of the olefin occurred mainly by a cationic mechanism, as suggested previously72. [Pg.918]

Most commercial polymers are substantially linear. They have a single chain of mers that forms the backbone of the molecule. Side-chains can occur and can have a major affect on physical properties. An elemental analysis of any polyolefin, (e.g., polyethylene, polypropylene, poly(l-butene), etc.) gives the same empirical formula, CH2, and it is only the nature of the side-chains that distinguishes between the polyolefins. Polypropylene has methyl side-chains on every other carbon atom along the backbone. Side-chains at random locations are called branches. Branching and other polymer structures can be deduced using analytical techniques such as NMR. [Pg.469]

Figure 2.10 Maps of conformational energy of various isotactic polymers as function of backbone torsion angles 0i and 02 (a) Isotactic polystyrene, (b) polypropylene, (c) poly(l-butene), and (d) poly(4-methyl-l-pentene). Succession of torsion angles. .. 0i020i02 [s(M/N) symmetry] has been assumed. Isoenergetic curves are reported every 10 (a,c,d) or 5 (b) kJ/mol of monomeric units with respect to absolute minimum of each map assumed as zero. Figure 2.10 Maps of conformational energy of various isotactic polymers as function of backbone torsion angles 0i and 02 (a) Isotactic polystyrene, (b) polypropylene, (c) poly(l-butene), and (d) poly(4-methyl-l-pentene). Succession of torsion angles. .. 0i020i02 [s(M/N) symmetry] has been assumed. Isoenergetic curves are reported every 10 (a,c,d) or 5 (b) kJ/mol of monomeric units with respect to absolute minimum of each map assumed as zero.
In the crystal structures of many other isotactic polymers, with chains in threefold or fourfold helical conformations, disorder in the up/down positioning of the chains is present. Typical examples are isotactic polystyrene,34,179 isotactic poly(l-butene),35 and isotactic poly(4-methyl-l-pentene).39,40,153,247... [Pg.129]

Figure 41. A plot of sensitivity to Mo (5.4k) x-ray radiation and 20 kV electron beam radiation for several resists. EPB is epoxidized polybutadiene, P(GMA-EA) is a copolymer of glycidyl methacrylate and ethyl acrylate (COP), PGMA is poly (glycidyl methacrylate), PBS is poly (butene-1 -sulfone), FBM-1 is poly (2,2,3,3-tetrafluoropropyl methacrylate), P(MMA-MA) is a copolymer of methyl methacrylate and methacrylic acid, PMMA is poly (methyl methacrylate). (Reproduced with permission from Ref. 56J... Figure 41. A plot of sensitivity to Mo (5.4k) x-ray radiation and 20 kV electron beam radiation for several resists. EPB is epoxidized polybutadiene, P(GMA-EA) is a copolymer of glycidyl methacrylate and ethyl acrylate (COP), PGMA is poly (glycidyl methacrylate), PBS is poly (butene-1 -sulfone), FBM-1 is poly (2,2,3,3-tetrafluoropropyl methacrylate), P(MMA-MA) is a copolymer of methyl methacrylate and methacrylic acid, PMMA is poly (methyl methacrylate). (Reproduced with permission from Ref. 56J...
D. Where there is no conflict with other guidelines, triple bonds are senior to double bonds, which in turn are senior to single bonds multiple bonds should be assigned the lowest possible locants. Thus, the polymer from 1,3-butanediene polymerized in the 1,4- mode is usually indicated as-(—C—C=C—C — )-but is named as though it were-( - C=C - C - C - )-and named poly(l-butene-1,4-diyl) with the appropriate cis- or tra i-designation. Polyisoprene, typically drawn as-(—CH2 —C(CH3)=CH—CH2 —) —is frequently named poly(2-methyl-1,3-butadiene) but is named as though its structure were-(C(CH3)=CH—CH2—CH2 — ) —with the namepoly(l-methyl-1 -butene-1,4-diyl). [Pg.732]

Liu and Zhong introduced a number of QSPR models based on molecular connectivity indices [151, 152], In a first iteration, the researchers developed polymer-dependent correlations descriptors were calculated for a set of solvents and models were developed per polymer type [151], Polymer classes under consideration were polystyrene, polyethylene, poly-1-butene, poly-l-pentene, poly(4-methyl-l-pentene), polydimethylsiloxane, and polyisobutylene. As the authors fail to provide any validation for their models, it is difficult to asses their predictive power. In a subsequent iteration and general expansion of this study, mixed and therefore more general models based on the calculated connectivity indices of both solvent and polymers were developed. While it is unclear from the paper which polymer representation was used for the calculation of the connectivity indices, the best regression model (eight parameter model) yields only acceptable predictive power (R = 0.77, = 0.77, s = 34.47 for the training set, R = 0.75... [Pg.140]

The intramolecular interaction energy was calculated for five isotactic polymers, namely, isotactic polypropylene, poly(U-methyl-l-pentene), poly(3-methyl-1-butene), polyacetaldehyde, and poly(methyl methacrylate) (23). The molecular structures of the first four polymers have already been determined by x-ray analyses as (3/1) (2k), (7/2) (18,25.,26), (U/l) (21), and (U/l) helices (28), respectively. Here (7/2) means seven monomeric units turn twice in the fiber identity period. For isotactic poly(methyl methacrylate) (29), a (5/l) helix was considered reasonable at the time of the energy calculation in 1970, before the discovering of... [Pg.43]

The other three polymers have additional rotation angles in the side chains, x and/or x. For poly(3-methyl-1-butene), the minimum was found in the three-dimensional plot. For poly(U-methyl-l-pentene) and poly(methyl methacrylate), the stable conformation of the side chain was first calculated with the fixed main chain conformation corresponding to the (7/2) and (5/1) helices, respectively. The potential energy was calculated against the main chain rotation angles, x and t2, by fixing x and x of the side chain at the values thus obtained. ... [Pg.44]

PP-b-PMMA (Mn = 22220, Mw/Mn = 1.14) was produced by CRP via another route. Terminally vinyl PP (Mn = 3100, Mw/Mn = 1.45, isotactic-ity = 32%) prepared using a zirconocene catalyst was converted to terminally brominated PP via PP-SiH prepared by hydrosilylation [70]. The resulting PP-b-PMMA was purified by extraction of unreacted PP with diethyl ether. Poly(ethylene-co-butene)-bZocfc-poly(methyl methacrylate) (EBR-b-PMMA) was synthesized through the bromination of terminally hydroxy-lated EBR (Mw = 3600 g/mol, Mw/Mn = 1.05), which was commercially available [71]. An atactic PP/PMMA had been synthesized by a combination of metallocene catalyses, Cp2ZrCl2 and Me2Si(CpMe4)(.W-f-Bu)TiCl2, and ATRP [72]. [Pg.96]

The commercial production of high-density polyethylene started almost at the same time in late 1956 by Phillips using a chromium-based catalyst in a medium-pressure process and by Hoechst using a Ziegler catalyst in a low-pressure process. Polypropylene production began in Montecatini and Hercules plants in 1957. Poly(l-butene) and poly(4-methyl-1-pentene) have been produced in small commercial quantities since about 1965. The commercial production of ethylene/propylene-based rubbers started in 1960 [241]. [Pg.216]

Dynamic mechanical and NMR investigations of crystals grown from dilute solutions for polymers other than linear polyethylene have been much less extensive. Studies have been reported for the linear polymers polyoxy methylene (3, 40, 94), poly (ethylene oxide) (3, 78), and nylon 6 (42), and the branched polymers polypropylene (40), poly-l-butene (19, 95), poly(4-methyl-l-pentene) (33), poly (vinyl alcohol) (78), and branched polyethylene (78). In addition, dielectric loss measurements have been made on crystal aggregates of poly (ethylene oxide) (23), poly (vinyl alcohol) (68), and polyoxymethylene (3) and mechanical loss measurements have been carried out on polyoxymethylene formed by solid state polymerization (94). [Pg.314]


See other pages where Poly 3-methyl-butene is mentioned: [Pg.6]    [Pg.101]    [Pg.533]    [Pg.239]    [Pg.266]    [Pg.235]    [Pg.196]    [Pg.346]    [Pg.403]    [Pg.11]    [Pg.276]    [Pg.78]    [Pg.105]    [Pg.180]    [Pg.254]    [Pg.2]    [Pg.111]    [Pg.111]    [Pg.22]    [Pg.461]    [Pg.50]    [Pg.698]    [Pg.6]    [Pg.278]    [Pg.194]    [Pg.558]    [Pg.350]    [Pg.31]    [Pg.12]    [Pg.9]    [Pg.26]    [Pg.28]    [Pg.143]    [Pg.171]    [Pg.216]    [Pg.101]    [Pg.533]    [Pg.359]    [Pg.527]    [Pg.57]    [Pg.60]    [Pg.154]    [Pg.228]    [Pg.215]   
See also in sourсe #XX -- [ Pg.239 , Pg.261 , Pg.266 , Pg.271 , Pg.294 ]




SEARCH



2-Methyl-2-butenal

2-Methyl-2-butene

3-Methyl-2-buten

Poly(methyl

Poly-1-butene

© 2024 chempedia.info