Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly isomers

The majority of xylenes, which are mostly produced by catalytic reforming or petroleum fractions, ate used in motor gasoline (see Gasoline and other MOTORFUELs). The majority of the xylenes that are recovered for petrochemicals use are used to produce PX and OX. PX is the most important commercial isomer. Almost all of the PX is converted to terephthaUc acid and dimethylterephthalate, and then to poly(ethylene terephthalate) for ultimate use in fibers, films, and resins. [Pg.424]

Increa sing the bulkiness of the alkyl group from the esterifying alcohol in the ester also restricts the motion of backbone polymer chains past each other, as evidenced by an increase in the T within a series of isomers. In Table 1, note the increase in T of poly(isopropyl methacrylate) over the / -propyl ester and similar trends within the butyl series. The member of the butyl series with the bulkiest alcohol chain, poly(/-butyl methacrylate), has a T (107°C) almost identical to that of poly(methyl methacrylate) (Tg = 105° C), whereas the butyl isomer with the most flexible alcohol chain, poly( -butyl methaciylate), has a T of 20°C. Further increase in the rigidity and bulk of the side chain increases the T. An example is poly(isobomyl methacrylate)... [Pg.261]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

The specialty class of polyols includes poly(butadiene) and polycarbonate polyols. The poly(butadiene) polyols most commonly used in urethane adhesives have functionalities from 1.8 to 2.3 and contain the three isomers (x, y and z) shown in Table 2. Newer variants of poly(butadiene) polyols include a 90% 1,2 product, as well as hydrogenated versions, which produce a saturated hydrocarbon chain [28]. Poly(butadiene) polyols have an all-hydrocarbon backbone, producing a relatively low surface energy material, outstanding moisture resistance, and low vapor transmission values. Aromatic polycarbonate polyols are solids at room temperature. Aliphatic polycarbonate polyols are viscous liquids and are used to obtain adhesion to polar substrates, yet these polyols have better hydrolysis properties than do most polyesters. [Pg.770]

Cyclization of 2-benzyloxybenzoic acid (66) by means of poly-phosphoric acid affords the dibenzoxepinone, 67. Condensation with the Grignard reagent from 3-dimethylaminopropyl chloride, followed by dehydration of the alcohol thus produced affords doxepin (68), presumably as a mixture of geometrical isomers. [Pg.404]

Several selective interactions by MIP membrane systems have been reported. For example, an L-phenylalanine imprinted membrane prepared by in-situ crosslinking polymerization showed different fluxes for various amino acids [44]. Yoshikawa et al. [51] have prepared molecular imprinted membranes from a membrane material which bears a tetrapeptide residue (DIDE resin (7)), using the dry phase inversion procedure. It was found that a membrane which contains an oligopeptide residue from an L-amino acid and is imprinted with an L-amino acid derivative, recognizes the L-isomer in preference to the corresponding D-isomer, and vice versa. Exceptional difference in sorption selectivity between theophylline and caffeine was observed for poly(acrylonitrile-co-acrylic acid) blend membranes prepared by the wet phase inversion technique [53]. [Pg.136]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

Solvent polarity is also important in directing the reaction bath and the composition and orientation of the products. For example, the polymerization of butadiene with lithium in tetrahydrofuran (a polar solvent) gives a high 1,2 addition polymer. Polymerization of either butadiene or isoprene using lithium compounds in nonpolar solvent such as n-pentane produces a high cis-1,4 addition product. However, a higher cis-l,4-poly-isoprene isomer was obtained than when butadiene was used. This occurs because butadiene exists mainly in a transoid conformation at room temperature (a higher cisoid conformation is anticipated for isoprene) ... [Pg.308]

Dediazoniation of three o-substituted benzenediazonium salts in pyridinium poly(hydrogen fluoride) yields different products depending on the substituent, as Olah and Welch (1975) have found. The 2-methyl derivative gives 2-fluoro-toluene. With the 2-nitrobenzenediazonium ion the main product is 3-nitrofluoro-benzene, the 2-isomer being formed only in small quantities. Finally, the 2-tri-fluoromethyl derivative yields all three isomeric trifluoromethylfluorobenzenes. [Pg.162]

The most radiation-stable poly(olefin sulfone) is polyethylene sulfone) and the most radiation-sensitive is poly(cyclohexene sulfone). In the case of poly(3-methyl-l-butene sulfone) there is very much isomerization of the olefin formed by radiolysis and only 58.5% of the olefin formed is 3-methyl-l-butene. The main isomerization product is 2-methyl-2-butene (37.3% of the olefin). Similar isomerization, though to a smaller extent, occurs in poly(l-butene sulfone) where about 10% of 2-butene is formed. The formation of the olefin isomer may occur partly by radiation-induced isomerization of the initial olefin, but studies with added scavengers73 do not support this as the major source of the isomers. The presence of a cation scavenger, triethylamine, eliminates the formation of the isomer of the parent olefin in both cases of poly(l-butene sulfone) and poly(3-methyl-1-butene sulfone)73 indicating that the isomerization of the olefin occurred mainly by a cationic mechanism, as suggested previously72. [Pg.918]

Polymers containing each of these configurations are known, the most common being the cis- A and the 1,4-isomers. The first of these, poly(c/ -l,4-isoprene), is the macromolecular constituent of natural rubber the second is the material known as gutta percha. The latter, unlike natural rubber, has no elastomeric properties, but has a leathery texture. It has been used for diverse applications such as golf-ball covers and as an insulating material for the trans-Atlantic cables of the late nineteenth century. [Pg.41]

That dendrimers are unique when compared with other architectures is confirmed by an investigation on porphyrin core dendrimers and their isomeric linear analogues [63]. The isomers displayed dramatically different hydrodynamic properties, crystallinity, and solubility characteristics when compared to those of their dendritic analogues, and photophysical studies showed that energy transfer from the poly(benzylether) backbone to the core was more efficient in the dendrimer because of the shorter distance between the donor units and the acceptor core. [Pg.179]

Poly(acrylic acid) is very soluble in water as are its copolymers with maleic and itaconic acids. Solutions of 50 % by mass are easily obtained. The isomer of PAA, poly(ethylene maleic acid), is not so soluble. However, solutions of PAA tend over a period of time to gel when their concentration in water approaches 50 % by mass (Crisp, Lewis Wilson, 1975) this is attributed to a slow increase in the number of intermolecular hydrogen bonds. Copolymers of acrylic acid and itaconic acid are more stable in solution and their use has been advocated by Crisp et al. (1975, 1980). [Pg.98]

The most spectacular results with temperature-programmed LC have been obtained for some notoriously difficult polymeric additives. Characterisation of the oligomeric HALS stabiliser poly [[6-[(l,l,3,3-te-tramethylbutyl) amino]-l,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidyl)imino]-l,6-hexanediyl [(2,2,6,6-tetramethyl-4-piperidyl)imino]] (I) (Figure 4.12) is difficult for several reasons it has a broad MWD, may contain isomers, and has several amino groups that promote almost irreversible adsorption to silica based column packings in LC. [Pg.253]

Poly(vinyl alcohol) has the structure 10.67. Poly(vinyl acetate) is the fully esterified derivative of polyfvinyl alcohol), in which the -OH groups are replaced by -OCOCH3 groups. As indicated in Table 10.5, commercial polyvinyl sizes are effectively copolymers of polyfvinyl acetate) and polyfvinyl alcohol) that vary in the degree of saponification of the ester groups. These products may comprise 100% of either polymer, or combinations of the two monomers in any proportions. Crotonic acid (2-butenoic acid), widely used in the preparation of resins, may also be a component. This compound exhibits cis-trans isomerism (Scheme 10.17). The solid trans form is produced readily by catalysed rearrangement of the liquid cis isomer. [Pg.98]

The final example in this section is the synthesis of a tristetrahydrofuran 2-606 described by the group of Rychnovsky [313]. Here, the tris(sulfate) 2-605 was converted into 2-606 by simply heating it in a mixture of MeCN and H20 (Scheme 2.138). The domino reaction is most likely initiated by deprotection of the primary alcohol, which then attacks the adjacent sulfonate unit in a SN2-type manner to afford the first furan moiety. Under the reaction conditions the formed acyclic sulfate is hydrolyzed affording a free secondary alcohol which then attacks the next adjacent cyclic sulfate unit. Overall, the SN2/hydrolyzation sequence proceeds three times to finally provide the poly(tetrahydrofuran) 2-606 as a single isomer in 93 % yield. [Pg.141]

Similar studies have been conducted on poly(vinyl chloride) (PVC) to assign different IR signatures obtained from different stereo-configurational isomers. The sensitivity of the vC-Cl bond on the stereochemical environment has been utilized using IR spectroscopy. The characteristic vibrations of the vC-Cl bonds are inherently tied in to the configuration as well as the conformation of the... [Pg.137]


See other pages where Poly isomers is mentioned: [Pg.366]    [Pg.348]    [Pg.190]    [Pg.489]    [Pg.341]    [Pg.307]    [Pg.35]    [Pg.317]    [Pg.317]    [Pg.131]    [Pg.10]    [Pg.35]    [Pg.59]    [Pg.230]    [Pg.42]    [Pg.52]    [Pg.126]    [Pg.55]    [Pg.365]    [Pg.365]    [Pg.374]    [Pg.230]    [Pg.75]    [Pg.854]    [Pg.298]    [Pg.51]    [Pg.433]    [Pg.356]    [Pg.112]    [Pg.33]    [Pg.367]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



© 2024 chempedia.info