Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly copolymers anionic polymerization

Polymerization ofiVIasked Disilenes. A novel approach, namely, the anionic polymerization of masked disilenes, has been used to synthesize a number of poly(dialkylsilanes) as well as the first dialkylamino substituted polysilanes (eq. 13) (111,112). The route is capable of providing monodisperse polymers with relatively high molecular weight M = lO" — 10 ), and holds promise of being a good method for the synthesis of alternating and block copolymers. [Pg.262]

As previously described, all microspheres discussed in this chapter were synthesized from AB type diblock copolymers. Precursor block copolymers, poly(styrene-b-4-vinyl pyridine) (P[S-b-4VP]) diblock copolymers, were synthesized using the additional anionic polymerization technique [13]. The basic properties of the block copolymers were determined elsewhere [24,25] and are listed... [Pg.602]

As these block copolymers were synthesized using the anionic polymerization technique, their molecular weight distributions were narrow. The microspheres with narrower size distribution are better for well-ordered self-organization. Actually, all block copolymers synthesized for these works formed poly(4-vinyl pyridine) (P4VP) spheres in the PS matrices with narrow size distributions. [Pg.602]

The poly(styrene-b-isoprene) (P(S-b-IP)) and poly(-styrene-b-2-vinyl pyridine) (P(S-b-2VP)) block copolymers with narrow molecular weight distributions for blending with the microspheres were also synthesized using the additional anionic polymerization technique. The number-average molecular weights (Mns) and PS contents are also shown in Table 1. [Pg.602]

Anionic polymerization of ethylene oxide by living carbanions of polystyrene was first carried out by Szwarc295. A limited number of methods have been reported in the preparation of A-B and A-B-A copolymers in which B was polystyrene and A was poly(oxyethylene)296-298. The actual procedure was to allow ethylene oxide to polymerize in a vacuum system at 70 °C with the polystyrene anion initiated with cumyl potassium in THF299. The yields of pure block copolymers are usually limited to about 80% because homopolymers are formed300. ... [Pg.25]

Anionic polymerization of lactams was shown to proceed according to what is called the activated monomer mechanism. With bischloroformates of hydroxy-terminated poly(tetramethyleneglycol) and poly(styrene glycol) as precursors for a polymeric initiator containing N-acyl lactam ends, block copolymers with n-pyrrol-idone and e-caprolactam were obtained by bulk polymerizations in vacuum at 30 and 80 °C, respectively361. ... [Pg.30]

A radical initiator based on the oxidation adduct of an alkyl-9-BBN (47) has been utilized to produce poly(methylmethacrylate) (48) (Fig. 31) from methylmethacrylate monomer by a living anionic polymerization route that does not require the mediation of a metal catalyst. The relatively broad molecular weight distribution (PDI = (MJM ) 2.5) compared with those in living anionic polymerization cases was attributed to the slow initiation of the polymerization.69 A similar radical polymerization route aided by 47 was utilized in the synthesis of functionalized syndiotactic polystyrene (PS) polymers by the copolymerization of styrene.70 The borane groups in the functionalized syndiotactic polystyrenes were transformed into free-radical initiators for the in situ free-radical graft polymerization to prepare s-PS-g-PMMA graft copolymers. [Pg.41]

Hyperbranched polymers have also been prepared via living anionic polymerization. The reaction of poly(4-methylstyrene)-fo-polystyrene lithium with a small amount of divinylbenzene, afforded a star-block copolymer with 4-methylstyrene units in the periphery [200]. The methyl groups were subsequently metalated with s-butyllithium/tetramethylethylenediamine. The produced anions initiated the polymerization of a-methylstyrene (Scheme 109). From the radius of gyration to hydrodynamic radius ratio (0.96-1.1) it was concluded that the second generation polymers behaved like soft spheres. [Pg.123]

A combination of TEMPO living free radical (LFRP) and anionic polymerization was used for the synthesis of block-graft, block-brush, and graft-block-graft copolymers of styrene and isoprene [201]. The block-graft copolymers were synthesized by preparing a PS-fo-poly(styrene-co-p-chloromethylstyrene) by LFRP [Scheme 110 (1)], and the subsequent re-... [Pg.123]

The precipitated silica (J. Crosfield Sons) was heated in vacuo at 120° for 24h. before use. Two grades of surface areas 186 and 227 m g l (BET,N2), were used during this project. Random copolymers, poly(methyl methacrylates) and polystyrene PS I were prepared by radical polymerization block polymers and the other polystyrenes were made by anionic polymerization with either sodium naphthalene or sodium a methylstyrene tetramer as initiator. The polymer compositions and molecular weights are given in Table I. [Pg.298]

Application of amphiphilic block copolymers for nanoparticle formation has been developed by several research groups. R. Schrock et al. prepared nanoparticles in segregated block copolymers in the sohd state [39] A. Eisenberg et al. used ionomer block copolymers and prepared semiconductor particles (PdS, CdS) [40] M. Moller et al. studied gold colloidals in thin films of block copolymers [41]. M. Antonietti et al. studied noble metal nanoparticle stabilized in block copolymer micelles for the purpose of catalysis [36]. Initial studies were focused on the use of poly(styrene)-folock-poly(4-vinylpyridine) (PS-b-P4VP) copolymers prepared by anionic polymerization and its application for noble metal colloid formation and stabilization in solvents such as toluene, THF or cyclohexane (Fig. 6.4) [42]. [Pg.283]

Based on this approach Schouten et al. [254] attached a silane-functionalized styrene derivative (4-trichlorosilylstyrene) on colloidal silica as well as on flat glass substrates and silicon wafers and added a five-fold excess BuLi to create the active surface sites for LASIP in toluene as the solvent. With THF as the reaction medium, the BuLi was found to react not only with the vinyl groups of the styrene derivative but also with the siloxane groups of the substrate. It was found that even under optimized reaction conditions, LASIP from silica and especially from flat surfaces could not be performed in a reproducible manner. Free silanol groups at the surface as well as the ever-present impurities adsorbed on silica, impaired the anionic polymerization. However, living anionic polymerization behavior was found and the polymer load increased linearly with the polymerization time. Polystyrene homopolymer brushes as well as block copolymers of poly(styrene-f)lock-MMA) and poly(styrene-block-isoprene) could be prepared. [Pg.414]

Similar block copolymers, i.e., poly(S- -CL), poly(BD- -CL) as well as po-ly(S-b-BD- -CL) ABC triblock copolymers have recently been prepared by Sta-dler et al. by sequential anionic polymerization (Scheme 20) [76]. Addition of... [Pg.28]

During the last 5 years, there have been several reports of multiblock copolymer brushes by the grafting-from method. The most common substrates are gold and silicon oxide layers but there have been reports of diblock brush formation on clay surfaces [37] and silicon-hydride surfaces [38]. Most of the newer reports have utilized ATRP [34,38-43] but there have been a couple of reports that utilized anionic polymerization [44, 45]. Zhao and co-workers [21,22] have used a combination of ATRP and nitroxide-mediated polymerization to prepare mixed poly(methyl methacrylate) (PMMA)Zpolystyrene (PS) brushes from a difunctional initiator. These Y-shaped brushes could be considered block copolymers that are surface immobilized at the block junction. [Pg.130]

The industrial synthesis of polyformaldehyde [poly(oxymethylene)] occurs by anionic polymerization of formaldehyde in suspension. For this the purification and handling of monomeric formaldehyde is of special importance since it tends to form solid paraformaldehyde. After the polymerization the semiacetal end groups have to be protected in order to avoid thermal depolymerization (Example 5-13). This is achieved by esterfication with acetic anhydride (see Example 5-7). As in the case of trioxane copolymers (see Sect. 3.2.3.2) the homopolymers of formaldehyde find application as engineering plastics. [Pg.204]

These copolymers were made by anionically polymerizing 1,3-butadiene with n-Buli followed by the addition of isoprene to the live cement. The molecular weight was varied in the 1,H poly(bd) block to produce the maximum physical properties. The content of the Bd/isoprene in the copolymer was varied 30/70. Similarly, (Table VI) the molecular weight of the diblock was kept constant at 60 AO Bd isoprene ratio, while the molecular weight of the individual block was varied. In Tables V and VI the physical properties of the di block of the conjugated diene rubber showed elastomeric properties typical of that of the uncrossed elastomer. [Pg.415]


See other pages where Poly copolymers anionic polymerization is mentioned: [Pg.170]    [Pg.269]    [Pg.3]    [Pg.26]    [Pg.31]    [Pg.27]    [Pg.107]    [Pg.153]    [Pg.154]    [Pg.270]    [Pg.20]    [Pg.27]    [Pg.94]    [Pg.101]    [Pg.120]    [Pg.268]    [Pg.209]    [Pg.155]    [Pg.664]    [Pg.224]    [Pg.230]    [Pg.258]    [Pg.27]    [Pg.604]    [Pg.74]    [Pg.76]    [Pg.186]    [Pg.644]    [Pg.410]    [Pg.3]    [Pg.278]   
See also in sourсe #XX -- [ Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 ]




SEARCH



Anions, poly

Poly , polymeric

Poly anionic polymerization

Poly graft copolymers, anionic polymerization

Polymerization copolymers

Polymerization poly

© 2024 chempedia.info