Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly conversion

Ak2o has been iastmmental ia developiag a new process for the stereospecific synthesis of 1,4-cyclohexane diisocyanate [7517-76-2] (21). This process, based on the conversion of poly(ethylene terephthalate) [25038-59-9] circumvents the elaborate fractional crystallisation procedures required for the existing -phenylenediamine [108-45-2] approaches. The synthesis starts with poly(ethylene terephthalate) (PET) (32) or phthaUc acid, which is converted to the dimethyl ester and hydrogenated to yield the cyclohexane-based diester (33). Subsequent reaction of the ester with ammonia provides the desired bisamide (34). The synthesis of the amide is the key... [Pg.455]

The chemical resistance and excellent light stabiUty of poly(methyl methacrylate) compared to two other transparent plastics is illustrated in Table 5 (25). Methacrylates readily depolymerize with high conversion, ie, 95%, at >300° C (1,26). Methyl methacrylate monomer can be obtained in high yield from mixed polymer materials, ie, scrap. [Pg.262]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Investigation has shown that chain transfer to polymer occurs predominantly on the acetate methyl group in preference to the chain backbone one estimate of the magnitude of the predominance is 40-fold (92,93). The number of branches per molecule of poly(vinyl acetate) polymerised at 60°C is ca 3, at 80% conversion. It rises rapidly thereafter and is ca 15 at 95% conversion and 1-2 x lO" number-average degrees of polymerisation. [Pg.466]

The catalysts most often described in the literature (209—211,252) are sodium or potassium hydroxide, methoxide, or ethoxide. The reported ratio of alkali metal hydroxides or metal alcoholates to that of poly(vinyl acetate) needed for conversion ranges from 0.2 to 4.0 wt % (211). Acid catalysts ate normally strong mineral acids such as sulfuric or hydrochloric acid (252—254). Acid-cataly2ed hydrolysis is much slower than that of the alkaline-cataly2ed hydrolysis, a fact that has limited the commercial use of these catalysts. [Pg.484]

Commercial Hydrolysis Process. The process of converting poly(vinyl acetate) to poly(vinyl alcohol) on a commercial scale is compHcated on account of the significant physical changes that accompany the conversion. The viscosity of the poly(vinyl acetate) solution increases rapidly as the conversion proceeds, because the resulting poly(vinyl alcohol) is insoluble in the most common solvents used for the polymeri2ation of vinyl acetate. The outcome is the formation of a gel swollen with the resulting acetic acid ester and the alcohol used to effect the transesterification. [Pg.484]

In the slurry process, the hydrolysis is accompHshed using two stirred-tank reactors in series (266). Solutions of poly(vinyl acetate) and catalyst are continuously added to the first reactor, where 90% of the conversion occur, and then transferred to the second reactor to reach hiU conversion. Alkyl acetate and alcohols are continuously distilled off in order to drive the equiUbrium of the reaction. The resulting poly(vinyl alcohol) particles tend to be very fine, resulting in a dusty product. The process has been modified to yield a less dusty product through process changes (267,268) and the use of additives (269). Partially hydroly2ed products having a narrow hydrolysis distribution cannot be prepared by this method. [Pg.485]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
All these elastomers, especially poly(ethylene- (9-butylene) and poly(ethylene- (9-propylene), are nonpolar. The corresponding block copolymers can thus be compounded with hydrocarbon-based extending oils, but do not have much oil resistance. Conversely, block copolymers with polar polyester or polyether elastomer segments have Htde affinity for such hydrocarbon oils and so have better oil resistance. [Pg.14]

Figures 6 and 8 show, generally that the conversion first increases fast then slowly with the dose. This is in agreement with the findings of Azzam [48] and Siyam [61]. The significant increase in the conversion percentage is attributed to the gel-effect [51,65]. In the gel-state, as the conversion percentage increases the viscosity of the medium is highly increased and the growing poly-... Figures 6 and 8 show, generally that the conversion first increases fast then slowly with the dose. This is in agreement with the findings of Azzam [48] and Siyam [61]. The significant increase in the conversion percentage is attributed to the gel-effect [51,65]. In the gel-state, as the conversion percentage increases the viscosity of the medium is highly increased and the growing poly-...
In most ionomers, it is customary to fully convert to the metal salt form but, in some instances, particularly for ionomers based on a partially crystalline homopolymer, a partial degree of conversion may provide the best mechanical properties. For example, as shown in Fig. 4, a significant increase in modulus occurs with increasing percent conversion for both Na and Ca salts of a poly(-ethylene-co-methacrylic acid) ionomer and in both cases, at a partial conversion of 30-50%, a maximum value, some 5-6 times higher than that of the acid copolymer, is obtained and this is followed by a subsequent decrease in the property [12]. The tensile strength of these ionomers also increases significantly with increasing conversion but values tend to level off at about 60% conversion. [Pg.148]

Since multiple electrical and optical functionality must be combined in the fabrication of an OLED, many workers have turned to the techniques of molecular self-assembly in order to optimize the microstructure of the materials used. In turn, such approaches necessitate the incorporation of additional chemical functionality into the molecules. For example, the successive dipping of a substrate into solutions of polyanion and polycation leads to the deposition of poly-ionic bilayers [59, 60]. Since the precursor form of PPV is cationic, this is a very appealing way to tailor its properties. Anionic polymers that have been studied include sulfonatcd polystyrene [59] and sulfonatcd polyanilinc 159, 60]. Thermal conversion of the precursor PPV then results in an electroluminescent blended polymer film. [Pg.223]

Other poly(2,5-dialkoxy-1,4-phenylene vinylene)s have been prepared in a similar fashion [34, 35, 40, 41]. Alternatively, a soluble a-halo precursor polymer 17 may be obtained by using less than one equivalent of base (Scheme 1-6). This may then be converted into fully conjugated material 16 by thermal treatment. This halo-precursor route may be preferred if the fully conjugated material has limited solubility or if incomplete conversion is desired. [Pg.333]


See other pages where Poly conversion is mentioned: [Pg.114]    [Pg.118]    [Pg.316]    [Pg.239]    [Pg.270]    [Pg.416]    [Pg.397]    [Pg.402]    [Pg.436]    [Pg.68]    [Pg.74]    [Pg.440]    [Pg.464]    [Pg.466]    [Pg.487]    [Pg.118]    [Pg.127]    [Pg.5]    [Pg.8]    [Pg.228]    [Pg.36]    [Pg.43]    [Pg.402]    [Pg.225]    [Pg.226]    [Pg.244]    [Pg.400]    [Pg.341]    [Pg.325]    [Pg.751]    [Pg.277]    [Pg.288]    [Pg.291]    [Pg.328]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Conversion of Poly-Silicon into

Photochemical conversion of poly(2,3-diphenylbutadiene)

Poly , tactic conversion

Poly , tactic polymer conversion

Poly high conversion polymer

Poly monomer conversion

Poly relative monomer conversion

Poly time conversion plots

Poly-4-vinylphenol conversion coatings

© 2024 chempedia.info