Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarograph constants

Marin, D. Mendicuti, F. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion, /. Chem. Educ. 1988, 65, 916-918. [Pg.535]

Stability constants of metal complexes of 9-hydroxy-4//-pyrido[l,2-n]pyrimidin-4-one [Ni(II), Co(II), Zn(II), and Cd(II)] were determined by potentiometric and polarographic investigations (93JCC283). The distribution coefficient of risperidone (11) in H20- -octanol at pH 7.4 (log D — 2.04) was determined by an RP-HPLC method (01JMC2490). [Pg.195]

The macrocyclic hexamine [18]aneN6 was further found to recognize catechol, catecholamines and biologically relevant compounds (see Chart II)64). It interacts with all of these donor compounds in neutral pH solutions to form 1 1 complexes, which were determined polarographically. The stability constants pL are summarized in Table 6. [Pg.129]

The constant 607 is a combination of natural constants, including the Faraday constant it is slightly temperature-dependent and the value 607 is for 25 °C. The IlkoviC equation is important because it accounts quantitatively for the many factors which influence the diffusion current in particular, the linear dependence of the diffusion current upon n and C. Thus, with all the other factors remaining constant, the diffusion current is directly proportional to the concentration of the electro-active material — this is of great importance in quantitative polarographic analysis. [Pg.597]

The potential at the point on the polarographic wave where the current is equal to one-half the diffusion current is termed the half-wave potential and is designated by 1/2. It is quite clear from equation (9) that 1/2 is a characteristic constant for a reversible oxidation-reduction system and that its value is independent of the concentration of the oxidant [Ox] in the bulk of the solution. It follows from equations (8) and (9) that at 25 °C ... [Pg.600]

Describe clearly the use of polarographic analysis for obtaining the values of the formation constant and stoichiometric number of metal complexes. [Pg.99]

As a result of polarographic investigations using e.g. a dropping mercury electrode electrochemical rate constants at the half wave potential Ey2 are reported ... [Pg.266]

Nonspectroscopic detection schemes are generally based on ionisation (e.g. FID, PID, ECD, MS) or thermal, chemical and (electro)chemical effects (e.g. CL, FPD, ECD, coulometry, colorimetry). Thermal detectors generally exhibit a poor selectivity. Electrochemical detectors are based on the principles of capacitance (dielectric constant detector), resistance (conductivity detector), voltage (potentiometric detector) and current (coulometric, polarographic and amperometric detectors) [35]. [Pg.179]

In agreement with the theory of electrolysis, treated in Sections 3.1 and 3.2, the parts of the residual current and the limiting current are clearly shown by the nature of the polarographic waves because for the cathodic reduction of Cd2+ and Zn2+ at the dme we have to deal with rapid electron transfer and limited diffusion of the cations from the solution towards the electrode surface and of the metal amalgam formed thereon towards the inside of the Hg drop, we may conclude that the half-wave potential, Eh, is constant [cf., Fig. 3.13 (a ] and agrees with the redox potential of the amalgam, i.e., -0.3521V for Cd2+ + 2e - Cd(Hg) and -0.7628 V for Zn2+ + 2e -> Zn(Hg) (ref. 10). The Nernst equation is... [Pg.129]

Majer65 in 1936 proposed measuring, instead of the entire polarographic curve, only the limiting current at a potential sufficiently high for that purpose if under these conditions one titrates metal ions such as Zn2+, Cd2+, Pb2+, Ni2+, Fe3+ and Bi3+ with EDTA66, one obtains a titration as depicted in Fig. 3.55 i, decreases to a very low value, in agreement with the stability constant of the EDTA-metal complex and the titration end-point is established by the intersection of the ij curves before and after that point correction of the i values for alteration of the solution volume by the titrant increments as in conductometric titration is recommended. [Pg.178]

From measurements of this type Thomaz and Stevens found a linear relationship for a graph of log(kJrPC,2) vs. where n is the number of halogen atoms in the molecule, is the spin-orbit coupling constant, and Em is the polarographic half-wave reduction potential of the heavy-atom quencher (Figure 5.16). This correlation suggests that an exciplex is formed by partial... [Pg.437]

Willems et al. [37] used a polarographic method to study the miconazole complexes of some trace elements. Manganese, iron, cobalt, and zinc element formed miconazole complexes with different stability constants. Polarography was used for detecting stability constants. The evolution of the respective formation constants followed the natural (Irving-Williams) order. The stepwise constant of the complexes formed increased from manganese to cobalt and decreased for zinc. The results are discussed with respect to the possible mechanism of action of miconazole. [Pg.42]

Mohamed [63] investigated the complexation behavior of amodiaquine and primaquine with Cu(II) by a polarographic method. The reduction process at dropping mercury electrode in aqueous medium is reversible and diffusion controlled, giving well-defined peaks. The cathodic shift in the peak potential (Ep) with increasing ligand concentrations and the trend of the plot of EVl versus log Cx indicate complex formation, probably more than one complex species. The composition and stability constants of the simple complexes formed were determined. The logarithmic stability constants are log Bi = 3.56 log B2 = 3.38, and log B3 = 3.32 [Cu(II)-primaquine at 25 °C]. [Pg.185]

The experimental set-up for cellular oxygen measurements (p02) consists of following components p02 measuring micro chamber (volume 0.6 microliter), polarographic microelectrode, water-bath for constant temperature, chemical microsensor connected to a strip-chart recorder and gas calibration unit. [Pg.505]

Quantitative structure-chemical reactivity relationships (QSRR). Chemical reactivities involve the formation and/or cleavage of chemical bonds. Examples of chemical reactivity data are equilibrium constants, rate constants, polarographic half wave potentials and oxidation-reduction potentials. [Pg.685]

Amperometric titrations are inherently more precise than polarography and are more generally applicable because the analyte need not itself be electroactive. Titrations involving the DME are not affected by changes in capillary characteristics as are conventional polarographic determinations, whilst working at a predetermined temperature is unnecessary provided that it remains reasonably constant throughout the titration. [Pg.659]

The polarographic behavior of nalidixic acid has been studied by Staroscik and co-workers.(35) The pH range of -2.9 to 11 in 20% DMF was investigated in the concentration range of 5 x 10-V and three stages of reduction were found. The potentials were found to vary linearly with pH for the first two reduction stages, while the third was constant and appeared at pH >8. The carbonyl on C-4 was shown to be reduced to the 4-hydroxy product. Nalidixic acid was reduced with sodium borohydride and the product was demonstrated to be the same as that in the polarographic reduction by TLC. [Pg.391]

In classical polarographic techniques, a dropping mercury electrode is used. This is a complex device in which continuously produced small droplets of mercury are used as the active electrode in order to prevent poisoning of the electrode and to provide constant conditions throughout the analysis. For many applications, specifically designed electrodes are available which are simpler to use. [Pg.189]

To leam how equilibrium constants of association, K, may be obtained polarographically by analysing shifts in the half-wave potential 1/2 as a function of complex concentration. [Pg.132]

At the heart of the polarographic apparatus is a fine-bore capillary through which mercury flows at a constant rate. Mercury emerges from the end of the capillary as small droplets, which are formed at a constant, controlled rate of between 10-60 drops per minute. During each drop cycle , the spherical drop emerges, grows in diameter and then falls. ... [Pg.146]

Values of A , and k may be extracted from the polarographic data, although the treatment is complex. Examples of its use to measure the rate constants for certain redox reactions are given in Refs. 339 and 340 which should be consulted for full experimental details. The values obtained are in reasonable agreement with those from stopped-flow and other methods. The technique has still not been used much to collect rate constants for homogenous reactions. The availability of ultramicroelectrodes has enabled cyclic voltammograms to be recorded at speeds as high as 10 Vs". Transients with very short lifetimes (< ps) and their reaction rates may be characterised. ... [Pg.175]


See other pages where Polarograph constants is mentioned: [Pg.254]    [Pg.183]    [Pg.81]    [Pg.158]    [Pg.591]    [Pg.595]    [Pg.609]    [Pg.629]    [Pg.632]    [Pg.871]    [Pg.78]    [Pg.65]    [Pg.431]    [Pg.298]    [Pg.671]    [Pg.138]    [Pg.196]    [Pg.307]    [Pg.362]    [Pg.365]    [Pg.245]    [Pg.229]    [Pg.145]    [Pg.250]    [Pg.188]    [Pg.97]    [Pg.16]    [Pg.297]    [Pg.355]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Polarographic

Polarographs

© 2024 chempedia.info