Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarized solvent cavity

This shows that the dielectric constant e of a polar solvent is related to the cavity fimction for two ions at large separations. One could extend this concept to define a local dielectric constant z(r) for the interaction between two ions at small separations. [Pg.470]

Figures 17A and 17B (p. 183) show energy as a function of rotation for a series of 1-substituted acetaldehydes, with 6 = 0° in the syn conformation and 6 = 180° in the anti conformation. The calculations were done using the PM3 method. Figure 17A for a vacuum, whereas Fig. 17B is for a solvent cavity with a dielectric constant of 4." The table gives the calculated barriers. Discuss the following aspects (a) rationalize the order Br > Cl > F for syn conformers (b) rationalize the shift to favor the am. conformation in the more polar environment. [Pg.182]

Attempts have been made to distinguish between these theories on the basis of the AH° and values anticipated for the two theories, but it may be illusory to think of them as independent alternatives. The eavity model has been criticized on the basis that it eannot account for certain observations such as the denaturing effect of urea, but it must be noted that the cavity theory includes not only the cavity term AAy, but also a term (or terms) for the interaction of the solutes and the solvent. A more eogent objeetion might be to the extension of the macroseopic concepts of surface area and tension to the molecular scale. A demonstration of the validity of the cavity concept has been made with silanized glass beads, which aggregate in polar solvents and disperse in nonpolar solvents. [Pg.396]

Although the LD model is clearly a rough approximation, it seems to capture the main physics of polar solvents. This model overcomes the key problems associated with the macroscopic model of eq. (2.18), eliminating the dependence of the results on an ill-defined cavity radius and the need to use a dielectric constant which is not defined properly at a short distance from the solute. The LD model provides an effective estimate of solvation energies of the ionic states and allows one to explore the energetics of chemical reactions in polar solvents. [Pg.51]

According to the coordinatoclathrate predict, the Spiro compound 23 will not allow the formation of inclusion compounds with dimethylformamide and other polar solvents, but with benzene, tetrahydrofuran, and 1-bromopentane (Table 3). Due to the limited number of guest inclusions, a lattice cavity of rather restricted dimensions is suggested for 23 e.g. toluene, cyclohexane or dioxane are not suitable guest partners for 23, whereas lower homologues (cf. benzene, tetrahydrofuran) are readily included 37). The behavior of a reduced analogue of 23, the hydroxymethyl — substituted spiro compound 24, is in some way comparable since an inclusion compound with benzene is the only one known interestingly it is formed exclusively with optically resolved but not with racemic 24 49). [Pg.73]

Foresman et al.175 applied the DFT(B3LYP)/SCRF calculations to obtain the polar solvent effect on conformational equilibria in furfuraldehyde and on the C-C rotational barrier of (2-nitrovinyl)amine. The authors demonstrated that the poor results obtained using either spherical or ellipsoidal cavities can be significantly improved upon performing the SCRF calculations for the cavity of molecular shape. [Pg.113]

Ionic reactions of neutral substrates can show large solvent dependence, due to the differential solvent stabilization of the ionic intermediates and their associated dipolar transition states (Reichardt, 1988). This is the case for the electrophilic addition of bromine to alkenes (Ruasse, 1990, 1992 Ruasse et al., 1991) and the bromination of phenol (Tee and Bennett, 1988a), both of which have Grunwald-Winstein m values approximately equal to 1 so that the reactions are very much slower in media less polar than water. Such processes, therefore, would be expected to be retarded or even inhibited by CDs for two reasons (a) the formation of complexes with the CD lowers the free concentrations of the reactants and (b) slower reaction within the microenvironment of the less polar CD cavity (if it were sterically possible). [Pg.17]

For quite some time most synthetic efforts to prepare cavitand-type hosts led to compounds that were only soluble in low polarity solvents. Because of their potential biological relevance, interest on the synthesis of water-soluble cavitands developed quickly, but only recently a number of accessible hosts has become available. We will describe here recent work done by us on Gibb s octaacid, deep-cavity cavitand58 and Rebek s water-soluble cavitand.59 The structures of these compounds are shown in Fig. 3.10. [Pg.79]

On the basis of an Onsager cavity (23) model of dielectrics applied to a polar solute with an intrinsic dipole movement /xr° in its rth electronic state, Mazurenko gives an equation for the orientational free energy of the solute molecule in a pure polar solvent environment, which can be identified as equivalent to u/jlpe chem, thus 2... [Pg.164]

When an electron is injected into a polar solvent such as water or alcohols, the electron is solvated and forms so-called the solvated electron. This solvated electron is considered the most basic anionic species in solutions and it has been extensively studied by variety of experimental and theoretical methods. Especially, the solvated electron in water (the hydrated electron) has been attracting much interest in wide fields because of its fundamental importance. It is well-known that the solvated electron in water exhibits a very broad absorption band peaked around 720 nm. This broad absorption is mainly attributed to the s- p transition of the electron in a solvent cavity. Recently, we measured picosecond time-resolved Raman scattering from water under the resonance condition with the s- p transition of the solvated electron, and found that strong transient Raman bands appeared in accordance with the generation of the solvated electron [1]. It was concluded that the observed transient Raman scattering was due to the water molecules that directly interact with the electron in the first solvation shell. Similar results were also obtained by a nanosecond Raman study [2]. This finding implies that we are now able to study the solvated electron by using vibrational spectroscopy. In this paper, we describe new information about the ultrafast dynamics of the solvated electron in water, which are obtained by time-resolved resonance Raman spectroscopy. [Pg.225]

Cyclodextrins (CD) can form inclusion complexes with small molecules by hydrophilic-hydrophobic interactions [33-37], Three CDs are readily available - 20, 21, and 22, denoted a, / , and y-CD, respectively. As the number of saccharides in the cyclic increases from 20 to 22, the cavity becomes larger. The hydroxy groups occupy the outside surface, resulting in hydrophilicity and high solubility in polar solvents. Their interiors consist of hydrocarbon units, making the cavity hydro-phobic. Thus when CD and a hydrophobic chain dissolve in a common polar solvent, the chain tends to occupy the cavity of the CD to achieve a lower energy level relative to its state in the polar medium this is hydrophobic-hydrophilic interaction. [Pg.283]

Of the three models that have been proposed to explain the properties of excess electrons in liquid helium, two are considered in detail (1) The electron is localized in a cavity in the liquid (2) The electron is a quasi-free particle. The pseudopotential method is helpful in studying both of these models. The most useful treatment of electron binding in polar solvents is based on a model with the solution as a continuous dielectric medium in which the additional electron induces a polarization field. This model can be used for studies with the hydrated electron. [Pg.13]


See other pages where Polarized solvent cavity is mentioned: [Pg.314]    [Pg.333]    [Pg.319]    [Pg.314]    [Pg.333]    [Pg.319]    [Pg.835]    [Pg.160]    [Pg.96]    [Pg.140]    [Pg.1041]    [Pg.95]    [Pg.225]    [Pg.203]    [Pg.32]    [Pg.113]    [Pg.6]    [Pg.336]    [Pg.344]    [Pg.381]    [Pg.56]    [Pg.119]    [Pg.15]    [Pg.19]    [Pg.312]    [Pg.35]    [Pg.636]    [Pg.148]    [Pg.149]    [Pg.551]    [Pg.95]    [Pg.146]    [Pg.256]    [Pg.7]    [Pg.67]    [Pg.227]    [Pg.96]    [Pg.170]    [Pg.209]    [Pg.87]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Cavity polarity

Polar solvents

Polarity, solvent

Polarity/polarization solvent

Polarization solvent

Solvent cavity

Solvent polar solvents

© 2024 chempedia.info