Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarisabilities

In the future, it is expected to be possible to make more routine use of additional wave types, specifically shear or S waves (polarised to horizontal and vertical components) which have a transverse mode of propagation, and are sensitive to a different set of rock properties than P waves. The potential then exists for increasing the number of independent attributes measured in reflection surveys and increasing the resolution of the subsurface image. [Pg.23]

Figure 1. shows the measured phase differenee derived using equation (6). A close match between the three sets of data points can be seen. Small jumps in the phase delay at 5tt, 3tt and most noticeably at tt are the result of the mathematical analysis used. As the cell is rotated such that tlie optical axis of the crystal structure runs parallel to the angle of polarisation, the cell acts as a phase-only modulator, and the voltage induced refractive index change no longer provides rotation of polarisation. This is desirable as ultimately the device is to be introduced to an interferometer, and any differing polarisations induced in the beams of such a device results in lower intensity modulation. [Pg.682]

But the methods have not really changed. The Verlet algorithm to solve Newton s equations, introduced by Verlet in 1967 [7], and it s variants are still the most popular algorithms today, possibly because they are time-reversible and symplectic, but surely because they are simple. The force field description was then, and still is, a combination of Lennard-Jones and Coulombic terms, with (mostly) harmonic bonds and periodic dihedrals. Modern extensions have added many more parameters but only modestly more reliability. The now almost universal use of constraints for bonds (and sometimes bond angles) was already introduced in 1977 [8]. That polarisability would be necessary was realized then [9], but it is still not routinely implemented today. Long-range interactions are still troublesome, but the methods that now become popular date back to Ewald in 1921 [10] and Hockney and Eastwood in 1981 [11]. [Pg.4]

This situation, despite the fact that reliability is increasing, is very undesirable. A considerable effort will be needed to revise the shape of the potential functions such that transferability is greatly enhanced and the number of atom types can be reduced. After all, there is only one type of carbon it has mass 12 and charge 6 and that is all that matters. What is obviously most needed is to incorporate essential many-body interactions in a proper way. In all present non-polarisable force fields many-body interactions are incorporated in an average way into pair-additive terms. In general, errors in one term are compensated by parameter adjustments in other terms, and the resulting force field is only valid for a limited range of environments. [Pg.8]

The total electron density is just the sum of the densities for the two types of electron. The exchange-correlation functional is typically different for the two cases, leading to a set of spin-polarised Kohn-Sham equations ... [Pg.149]

Our discussion of elecfronic effects has concentrated so far on permanent features of the cliarge distribution. Electrostatic interactions also arise from changes in the charge distribution of a molecule or atom caused by an external field, a process called polarisation. The primary effect of the external electric field (which in our case will be caused by neighbouring molecules) is to induce a dipole in the molecule. The magnitude of the induced dipole moment ginj is proportional to the electric field E, with the constant of proportionahty being the polarisability a ... [Pg.217]

For isolated atoms, the polarisability is isotropic - it does not depend on the orientation of fhe atom with respect to the applied field, and the induced dipole is in the direction of the electric field, as in Equation (4.51). However, the polarisability of a molecule is often anisotropic. This means that the orientation of the induced dipole is not necessarily in the same direction as the electric field. The polarisability of a molecule is often modelled as a collection of isotropically polarisable atoms. A small molecule may alternatively be modelled as a single isotropic polarisable centre. [Pg.217]

The polarisation interaction between a dipole and a polarisable molecule can be affected by the presence of a ond dipole (right) and is therefore a many-body effect. [Pg.218]

In the buffered 14-7 potential the minimum-energy separation r)) for an atom i depends on its atomic polarisability. [Pg.227]

Here, k is a factor which converts to units (kcal/mol in this case where the distances are in A and the polarisabilities in A ). G, and Gj are constants chosen to reproduce the well depths for like-with-like interactions. The atomic polarisability values are obtained from an examination of appropriate molecular experimental data (such as measurements of molar refractivity). [Pg.229]

The three-body contribution may also be modelled using a term of the form i ( AB,tAc,J Bc) = i A,B,c exp(-Q AB)exp(-/i Ac)exp(-7 Bc) where K, a, j3 and 7 are constants describing the interaction between the atoms A, B and C. Such a functional form has been used in simulations of ion-water systems, where polarisation alone does not exactly model configurations when there are two water molecules close to an ion [Lybrand and Kollman 1985]. The three-body exchange repulsion term is thus only calculated for ion-water-water trimers when the species are close together. [Pg.231]


See other pages where Polarisabilities is mentioned: [Pg.252]    [Pg.681]    [Pg.681]    [Pg.682]    [Pg.50]    [Pg.8]    [Pg.27]    [Pg.91]    [Pg.91]    [Pg.124]    [Pg.137]    [Pg.142]    [Pg.142]    [Pg.142]    [Pg.143]    [Pg.143]    [Pg.149]    [Pg.214]    [Pg.217]    [Pg.218]    [Pg.218]    [Pg.218]    [Pg.219]    [Pg.219]    [Pg.219]    [Pg.220]    [Pg.220]    [Pg.221]    [Pg.230]    [Pg.231]    [Pg.232]    [Pg.234]    [Pg.234]    [Pg.236]    [Pg.236]    [Pg.237]    [Pg.237]    [Pg.237]    [Pg.238]    [Pg.257]   
See also in sourсe #XX -- [ Pg.130 , Pg.131 , Pg.132 ]




SEARCH



Polarisability

Polarisable

Polarisation

Polariser

© 2024 chempedia.info