Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar molecules properties

The small lithium Li" and beryllium Be ions have high charge-radius ratios and consequently exert particularly strong attractions on other ions and on polar molecules. These attractions result in both high lattice and hydration energies and it is these high energies which account for many of the abnormal properties of the ionic compounds of lithium and beryllium. [Pg.134]

It is not difficult to relate the differences between these two groups to molecular structure. In order to do this the structure and electrical properties of atoms, symmetrical molecules, simple polar molecules and polymeric polar molecules will be considered in turn. [Pg.111]

The lipids found in biological systems are either hydrophobic (containing only nonpolar groups) or amphipathic, which means they possess both polar and nonpolar groups. The hydrophobic nature of lipid molecules allows membranes to act as effective barriers to more polar molecules. In this chapter, we discuss the chemical and physical properties of the various classes of lipid molecules. The following chapter considers membranes, whose properties depend intimately on their lipid constituents. [Pg.238]

We have considered the weak van der Waals forces that cause the condensation of covalent molecules. The formation of an ionic lattice results from the stronger interactions among molecules with highly ionic bonds. But most molecules fall between these two extremes. Most molecules are held together by bonds that are largely covalent, but with enough charge separation to affect the properties of the molecules. These are the molecules we have, called polar molecules. [Pg.312]

Chloroform, CHCla, is an example of a polar molecule. It has the same bond angles as methane, CH4, and carbon tetrachloride, CCLi- Carbon, with sp3 bonding, forms four tetrahedrally oriented bonds (as in Figure 16-11). However, the cancellation of the electric dipoles of the four C—Cl bonds in CCL does not occur when one of the chlorine atoms is replaced by a hydrogen atom. There is, then, a molecular dipole remaining. The effects of such electric dipoles are important to chemists because they affect chemical properties. We shall examine one of these, solvent action. [Pg.312]

Bonamy L., Nguyen Minh Hoang P. Far infrared absorption of diatomic polar molecules in simple liquids and statistical properties of the interactions. I. Spectral theory, J. Chem. Phys. 67, 4423-30 (1977) ... [Pg.293]

Doubling the separation of polar molecules reduces the strength of the interaction by a factor of 26 = 64, and so dipole-dipole interactions between rotating molecules have a significant effect only when the molecules are very close. We can now start to understand why the kinetic model accounts for the properties of gases so well gas molecules rotate and are far apart for most of the time, so any intermole-cular interactions between them are very weak. Equation 4 also describes attractions between rotating molecules in a liquid. However, in the liquid phase, molecules are closer than in the gas phase and therefore the dipole-dipole interactions are much stronger. [Pg.302]

The charge of a number of proteins has been measured by titration. The early experimental work focused on the determination of charge as a function of pH later work focused on comparing the experimental and theoretical results the latter obtained from the extensions of the Tanford-Kirkwood models on the electrostatic behavior of proteins. Ed-sall and Wyman [104] discuss the early work on the electrostatics of polar molecules and ions in solution, considering fundamental coulombic interactions and accounting for the dielectric properties of the media. Tanford [383,384], and Tanford and Kirkwood [387] describe the development of the Tanford-Kirkwood theories of protein electrostatics. For more recent work on protein electrostatics see Lenhoff and coworkers [64,146,334]. [Pg.588]

The results indicate that the zeolite can selectively extract specific compounds from the reaction medium, due to the different affinity towards each of them. This makes possible to develop reactant concentrations inside pores which are different from the bulk ones. This property is a function of the zeolite hydrophobic characteristics, which are affected by the Si/Al ratio. The best zeolite is that one which does not interact too strongly neither with more polar molecules, so to allow activation of formaldehyde to proceed faster, nor with the least polar ones. The intermediate Si/Al ratio in H-mordenites is able to develop the optimal concentration ratio between reactants inside the pores, and to reach the highest yield to vanillols. [Pg.360]

Jt is not possible to bond all of the surface silanol groups. Unreacted silanols are capable of adsorbing polar molecules, and will thus affect the chromatographic properties of the bonded phase. Usually, the unreacted silanols produce undesirable effects, such as tailing and excessive retention in reverse phase separations, although there have been cases reported where the unreacted silanols improve such... [Pg.95]

Monnard and Deamer (2001) carried out further studies, using DMPC liposomes, to determine their properties under conditions of passive diffusion of dissolved molecules. The passage across the lipid bilayer is a precondition for the intake of nutrient substances via the vesicle envelope. The experiments showed that even polar molecules can enter the interior of the liposomes oligonucleotides, however, cannot cross the lipid bilayer of DMPC vesicles. [Pg.270]

Although the association of polar molecules is accompanied by mately 2 to 5 kj mol-1, the effect on physical properties is great. [Pg.185]

Water is a polar solvent so has different solvation properties that discriminate between polar and non-polar molecules. Chemical discrimination results in the formation of mixed phases, such as membranes, microenvironments and compartmentalisation. [Pg.226]

When a strong static electric field is applied across a medium, its dielectric and optical properties become anisotropic. When a low frequency analyzing electric field is used to probe the anisotropy, it is called the nonlinear dielectric effect (NLDE) or dielectric saturation (17). It is the low frequency analogue of the Kerr effect. The interactions which cause the NLDE are similar to those of EFLS. For a single flexible polar molecule, the external field will influence the molecule in two ways firstly, it will interact with the total dipole moment and orient it, secondly, it will perturb the equilibrium conformation of the molecule to favor the conformations with the larger dipole moment. Thus, the orientation by the field will cause a decrease while the polarization of the molecule will cause an... [Pg.239]

In an effort to understand the mechanisms involved in formation of complex orientational structures of adsorbed molecules and to describe orientational, vibrational, and electronic excitations in systems of this kind, a new approach to solid surface theory has been developed which treats the properties of two-dimensional dipole systems.61,109,121 In adsorbed layers, dipole forces are the main contributors to lateral interactions both of dynamic dipole moments of vibrational or electronic molecular excitations and of static dipole moments (for polar molecules). In the previous chapter, we demonstrated that all the information on lateral interactions within a system is carried by the Fourier components of the dipole-dipole interaction tensors. In this chapter, we consider basic spectral parameters for two-dimensional lattice systems in which the unit cells contain several inequivalent molecules. As seen from Sec. 2.1, such structures are intrinsic in many systems of adsorbed molecules. For the Fourier components in question, the lattice-sublattice relations will be derived which enable, in particular, various parameters of orientational structures on a complex lattice to be expressed in terms of known characteristics of its Bravais sublattices. In the framework of such a treatment, the ground state of the system concerned as well as the infrared-active spectral frequencies of valence dipole vibrations will be elucidated. [Pg.52]


See other pages where Polar molecules properties is mentioned: [Pg.27]    [Pg.362]    [Pg.207]    [Pg.208]    [Pg.101]    [Pg.319]    [Pg.277]    [Pg.29]    [Pg.219]    [Pg.61]    [Pg.63]    [Pg.19]    [Pg.206]    [Pg.95]    [Pg.107]    [Pg.819]    [Pg.825]    [Pg.241]    [Pg.252]    [Pg.360]    [Pg.438]    [Pg.69]    [Pg.148]    [Pg.401]    [Pg.458]    [Pg.241]    [Pg.192]    [Pg.12]    [Pg.151]    [Pg.179]    [Pg.340]    [Pg.45]    [Pg.264]    [Pg.277]    [Pg.456]   
See also in sourсe #XX -- [ Pg.93 ]

See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Molecule polarity

Molecules polar molecule

Molecules, properties

Polar properties

Polarized molecules

© 2024 chempedia.info