Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium oxides reaction

The corrosion behavior of plutonium metal has been summarized (60,61). a-Plutonium oxidizes very slowly in dry air, typically <10 mm/yr. The rate is accelerated by water vapor. Thus, a bright metal surface tarnishes rapidly in normal environments and a powdery surface soon forms. Eventually green PUO2 [12059-95-9] covers the surface. Plutonium is similar to uranium with respect to corrosion characteristics. The stabilization of 5-Pu confers substantial corrosion resistance to Pu in the same way that stabilization of y-U yields a more corrosion-resistant metal. The reaction of Pu metal with Hquid water produces both oxides and oxide-hydrides (62). The reaction with water vapor above 100°C also produces oxides and hydride (63). [Pg.196]

The possible application of aqueous plutonium photochemistry to nuclear fuel reprocessing probably has been the best-received justification for investigating this subject. The necessary controls of and changes in Pu oxidation states could possibly be improved by plutonium photochemical reactions that were comparable to the uranyl photochemistry. [Pg.264]

The anode residues must be chemically processed to recover the plutonium remaining in the residues. This may amount to about 10% of the feed mass if delta alloy is the feed metal. Either aqueous or pyrochemical processes may be used for anode recovery. One pyrochemical process used for recovery utilizes oxidation of the plutonium with zinc chloride to form plutonium chloride salt, followed by calcium reduction of the PUCI3 contained in the salt phase to produce pure plutonium metal (the impurities follow the zinc metal obtained from the oxidation reaction and are discarded to waste). Impurities more stable than calcium chloride remain in the salt phase and are also... [Pg.400]

The Purex process is used for almost all fuel reprocessing today. Irradiated UO2 fuel is dissolved in HNO3 with the uranium being oxidized to U02(N03)2 and the plutonium oxidized to Pu(NC>3)4. A solution of TBP in a high-boiling hydrocarbon, such as n-dodecane, is used to selectively extract the hexavalent U02(N03)2 and the tetravalent Pu(NC>3)4 from the other actinides and fission products in the aqueous phase. The overall reactions are... [Pg.481]

Bondietti, E.A. and Reynolds, S.A. (1976) Field and laboratory observations on plutonium oxidation states. In Proceedings of an Actinide-Sediment Reactions Working Group Meeting, Seattle, Washington, BNWL2117, pp. 505-537. [Pg.383]

Salt and metal insoluble impurities, such as Pu02, associated with plutonium metal are taken up by the salt in Stage 1. Stage 2 is essentially free of these impurities. Strickland, et al. (14), reported that plutonium oxide extracts americium from molten plutonium metal in a molten salt media. Because these salt and metal insoluble impurities are present in sizable amounts only in Stage 1, the side reaction between americium and these impurities occurs only in Stage 1. The side reaction term (B) is introduced to quantify the side reaction caused by the presence of impurities such as in Stage 1. [Pg.66]

Radiation chemistry also made it possible to prepare radicals and ions of interest and study their properties. With the advent of pulse radiolysis, it was possible to directly explore the reactivity of such intermediates. In fact, many reactions that were suggested to be of importance in solar energy conversion could be more cleanly studied using radiation chemistry. Similarly, questions about the mobility of actinide species in the biosphere often depended on the reactivity of different oxidation states of materials such as plutonium. Thus, it was possible to show that plutonium oxides were unlikely to move quickly through water in the earth, because the soluble oxides were very reactive and the equilibrirrm values were far to the side of the insoluble compounds. [Pg.13]

Calcinm glectrowinning in piutniiium production. A potential application of inorganic membranes in radioactive waste treatment is in the industrially practiced direct oxide reduction process. In this process plutonium oxide is calciothermit y reduced to plutonium in the presence of calcium chloride according to the following reaction ... [Pg.240]

Several other useful reviews of reactions involving metal ions have also been published. Redox reactions of chromium(m)-amine species have been described and a survey has been made of the solution chemistry together with reaction paths involved in the redox reactions of various plutonium species. Oxidation reactions of thallium(m) have also been described. Developments in the redox chemistry of peroxides have been reviewed, the nature of the reactions which involve iron(iii) in various complexed forms providing a fascinating example of the manner in which geometry and co-ordination to the metal centre greatly affect the reactivity of the system. Redox properties of cobalt chelates, with delocalized... [Pg.3]

The many possible oxidation states of the actinides up to americium make the chemistry of their compounds rather extensive and complicated. Taking plutonium as an example, it exhibits oxidation states of -E 3, -E 4, +5 and -E 6, four being the most stable oxidation state. These states are all known in solution, for example Pu" as Pu ", and Pu as PuOj. PuOl" is analogous to UO , which is the stable uranium ion in solution. Each oxidation state is characterised by a different colour, for example PuOj is pink, but change of oxidation state and disproportionation can occur very readily between the various states. The chemistry in solution is also complicated by the ease of complex formation. However, plutonium can also form compounds such as oxides, carbides, nitrides and anhydrous halides which do not involve reactions in solution. Hence for example, it forms a violet fluoride, PuFj. and a brown fluoride. Pup4 a monoxide, PuO (probably an interstitial compound), and a stable dioxide, PUO2. The dioxide was the first compound of an artificial element to be separated in a weighable amount and the first to be identified by X-ray diffraction methods. [Pg.444]

Table 6 presents a summary of the oxidation—reduction characteristics of actinide ions (12—14,17,20). The disproportionation reactions of UO2, Pu , PUO2, and AmO are very compHcated and have been studied extensively. In the case of plutonium, the situation is especially complex four oxidation states of plutonium [(111), (IV), (V), and (VI) ] can exist together ia aqueous solution ia equiUbrium with each other at appreciable concentrations. [Pg.219]

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

T. W. Newton, The Kinetics of the Oxidation Reduction Reactions of Uranium, Neptunium, Plutonium, andMmericium inMqueous Solution, TlD-26506, U.S. Energy, Research, and Development Administration (ERDA) Technical Information Center, Washington, D.C., 1975. [Pg.206]

Mixed oxide fuel is not appropriate for all nuclear reactors. Plutonium requires faster neutrons in order to operate in a sustained chain reaction. Light-water reactors operate in a highly moderated environment. [Pg.870]

When the Plutonium Project was established early in 1942, for the purpose of producing plutonium via the nuclear chain reaction in uranium in sufficient quantities for its use as a nuclear explosive, we were given the challenge of developing a chemical method for separating and isolating it from the uranium and fission products. We had already conceived the principle of the oxidation-reduction cycle, which became the basis for such a separations process. This principle applied to any process involving the use of a substance which carried plutonium in one of its oxidation states but not in another. By use of this... [Pg.10]

Disproportionation reactions, which lead to several oxidation states simultaneously in solution, are also a significant aspect of plutonium chemistry, particularly for the IV and V species. [Pg.215]

Studies of ligands which might provide specificity in binding to various oxidation states of plutonium seems a particularly promising area for futher research. If specific ion electrodes could be developed for the other oxidation states, study of redox reactions would be much facilitated. Fast separation schemes which do not change the redox equilibria and function at neutral pH values would be helpful in studies of behavior of tracer levels of plutonium in environmental conditions. A particularly important question in this area is the role of PuOj which has been reported to be the dominant soluble form of plutonium in some studies of natural waters (3,14). [Pg.230]

Prediction of the chemistry of plutonium in near-neutral aqueous media is highly dependent on understanding reactions that may be occurring in such media. One of the most important parameters is the stability and nature of complexes formed by plutonium in its four common oxidation states. Because Pu(III), Pu(IV), and Pu(VI) are readily hydrolysed, complexation reactions generally are studied in mildly to strongly acidic media. Data determined in acid media (and frequently at high concentrations of plutonium) then are used to predict the chemical speciation of plutonium at near-neutral pH and low concentrations of the metal ion. [Pg.251]

The authoritative documents on plutonium 0 >2) do not include photo-chemical reactions of plutonium in aqueous systems. The first papers in Western world literature on studies that were dedicated to aqueous plutonium photochemistry appeared in 1976 (3, 4 ), even though photochemical changes in oxidation states were indicated as early as 1952 (5,, ]) ... [Pg.263]

Only the obvious studies of aqueous plutonium photochemistry have been completed, and the results are summarized below. The course of discussion will follow the particular photochemical reactions that have been observed, beginning with the higher oxidation states. This discussion will consider primarily those studies of aqueous plutonium In perchloric acid media but will include one reaction in nitric acid media. Aqueous systems other than perchlorate may affect particular plutonium states by redox reactions and complex formation and could obscure photochemical changes. Detailed experimental studies of plutonium photochemistry in other aqueous systems should also be conducted. [Pg.265]

The mechanisms by which Pu(IV) is oxidized in aquatic environments is not entirely clear. At Oak Ridge, laboratory experiments have shown that oxidation occurs when small volumes of unhydrolyzed Pu(IV) species (i.e., Pu(IV) in strong acid solution as a citric acid complex or in 45 percent Na2Coj) are added to large volumes of neutral-to-alkaline solutions(23). In repeated experiments, the ratios of oxidized to reduced species were not reproducible after dilution/hydrolysis, nor did the ratios of the oxidation states come to any equilibrium concentrations after two months of observation. These results indicate that rapid oxidation probably occurs at some step in the hydrolysis of reduced plutonium, but that this oxidation was not experimentally controllable. The subsequent failure of the various experimental solutions to converge to similar high ratios of Pu(V+VI)/Pu(III+IV) demonstrated that the rate of oxidation is extremely slow after Pu(IV) hydrolysis reactions are complete. [Pg.303]


See other pages where Plutonium oxides reaction is mentioned: [Pg.201]    [Pg.312]    [Pg.377]    [Pg.947]    [Pg.381]    [Pg.29]    [Pg.323]    [Pg.947]    [Pg.434]    [Pg.28]    [Pg.7092]    [Pg.2857]    [Pg.5550]    [Pg.39]    [Pg.199]    [Pg.203]    [Pg.177]    [Pg.203]    [Pg.156]    [Pg.9]    [Pg.28]    [Pg.215]    [Pg.273]    [Pg.357]   


SEARCH



Plutonium aqueous oxidation-reduction reactions

Plutonium oxidation

Plutonium oxidation-reduction reactions

Plutonium oxidative

Plutonium oxide reaction with, phosgene

Plutonium oxides

© 2024 chempedia.info