Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum coating, electrolytic

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

This electrode is perhaps next in importance to the calomel electrode as a reference electrode. It consists of a silver wire or a silver-plated platinum wire, coated electrolytically with a thin layer of silver chloride, dipping into a potassium chloride solution of known concentration which is saturated with silver chloride this is achieved by the addition of two or three drops of 0.1M silver nitrate solution. Saturated potassium chloride solution is most commonly employed in the electrode, but 1M or 0.1 M solutions can equally well be used as explained in Section 15.1, the potential of the electrode is governed by the activity of the chloride ions in the potassium chloride solution. [Pg.553]

Smooth platinum, lead dioxide and graphite are anode materials commonly used in electrooxidation processes. All show large overpotentials for oxygen evolution in aqueous solution. Platinum coated titanium is available as an alternative to sheet platinum metal. Stable surfaces of lead dioxide are prepared by electrolytic oxidation of sheet lead in dilute sulphuric acid and can be used in the presence of sulphuric acid as electrolyte. Lead dioxide may also be electroplated onto titanium anodes from lead(Il) nitrate solution to form a non-porous layer which can then be used in other electrolyte solutions [21],... [Pg.7]

The electrolytic cells shown ia Figures 2—7 represent both monopolar and bipolar types. The Chemetics chlorate cell (Fig. 2) contains bipolar anode/cathode assembhes. The cathodes are Stahrmet, a registered trademark of Chemetics International Co., and the anodes are titanium [7440-32-6] Ti, coated either with mthenium dioxide [12036-10-17, RUO2, or platinum [7440-06-4] Pt—indium [7439-88-5] Ir (see Metal anodes). Anodes and cathodes are joined to carrier plates of explosion-bonded titanium and Stahrmet, respectively. Several individual cells electrically connected in series are associated with one reaction vessel. [Pg.73]

The properties of platinum as an inert electrode in a variety of electrolytic processes are well known, and in cathodic protection it is utilised as a thin coating on a suitable substrate. In this way a small mass of Pt can provide a very large surface area and thus anodes of this type can be operated at high current densities in certain electrolyte solutions, such as seawater, and can be economical to use. [Pg.164]

Ruthenium, iridium and osmium The use of a fused cyanide electrolyte is the most effective means for the production of sound relatively thick coatings of ruthenium and iridium, but this type of process is unattractive and inconvenient for general purposes and does not therefore appear to have developed yet to a significant extent for industrial application. This is unfortunate, since these metals are the most refractory of the platinum group and in principle their properties might best be utilised in the form of coatings. However, several interesting improvements have been made in the development of aqueous electrolytes. [Pg.563]

Iridium has been deposited from chloride-sulphamate and from bromide electrolytes , but coating characteristics have not been fully evaluated. The bromide electrolytes were further developed by Tyrrell for the deposition of a range of binary and some ternary alloys of the platinum metals, but, other than the platinum-iridium system, no commercial exploitation of these processes has yet been made. [Pg.563]

By setting the ratio of the oxidized and reduced forms of a redox couple in an electrode coating film to unity, the potential of this electrode in an inert electrolyte is poised at the half-wave potential of the couple. This has indeed been shown for platinum wires coated with polyvinylferrocene or ferrocene modified polypyrrole But the long term stability of these electrodes during cell connection... [Pg.80]

The glass tubes contain mercury and are firmly fixed in the ebonite cover of the cell so that the distance between the electrodes may not change during the experiment. Contact with the platinum electrodes is made by dipping the copper wires of the circuit in the mercury contained in the tubes. The coating of the electrodes with platinum black is carried out in order to inhibit polarization. When examining certain electrolytes, platinized electrodes cannot be used since platinum black may catalyze the decomposition or the oxidation of the electrolyte. The cell is maintained at constant temperature thermostatically, as conductivity increases rather significantly with temperature. [Pg.610]

If a voltage is applied across two platinum electrodes (usually platinum sheets coated with platinum black) placed in an electrolytic solution, an electric current will be transferred to an extent that is in accordance with the amounts and the mobilities of the free positive and negative ions present in the solution. Under the precautions required (see Section 2.1.1.2), the experiment obeys Ohm s law, which here can be described by... [Pg.28]

Figure 2.39 (a) Schematic representation of the experimental arrangement for attenuated total reflection of infrared radiation in an electrochemical cell, (b) Schematic representation of the ATR cell design commonly employed in in situ 1R ATR experiments. SS = stainless steel cell body, usually coated with teflon P — Ge or Si prism WE = working electrode, evaporated or sputtered onto prism CE = platinum counter electrode RE = reference electrode T = teflon or viton O ring seals E = electrolyte. [Pg.99]


See other pages where Platinum coating, electrolytic is mentioned: [Pg.477]    [Pg.558]    [Pg.562]    [Pg.61]    [Pg.721]    [Pg.538]    [Pg.161]    [Pg.303]    [Pg.173]    [Pg.175]    [Pg.1085]    [Pg.267]    [Pg.435]    [Pg.587]    [Pg.591]    [Pg.4385]    [Pg.3506]    [Pg.569]    [Pg.580]    [Pg.2030]    [Pg.243]    [Pg.255]    [Pg.164]    [Pg.242]    [Pg.941]    [Pg.500]    [Pg.122]    [Pg.173]    [Pg.483]    [Pg.86]    [Pg.490]    [Pg.305]    [Pg.558]    [Pg.558]    [Pg.560]    [Pg.941]    [Pg.609]    [Pg.687]    [Pg.184]   
See also in sourсe #XX -- [ Pg.1565 ]




SEARCH



Electrolytic coating

© 2024 chempedia.info