Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasmon lineshape

Fig. 4.5 shows the effect of a solvent on the plasmon lineshape. Here we see the expected red shifting of all resonance structures as the refractive index is increased from 1.0 to 2.0. [Pg.52]

Fig. 4.6a considers a spherical core-shell particle in which the core is taken to be vacuum and the shell is silver. The particle radius is 50 nm, so when the shell thickness is 50 nm we recover the solid particle result. As the shell becomes thinner, the plasmon resonance red-shifts considerably, very much like we see for highly oblate spheroids. Fig. 4.6a assumes that the dielectric constant of silver is independent of shell thickness, so the resonance width does not change much when the shell becomes thin. However, the correct dielectric response needs to include for finite size effects (as noted above) when the shell thickness is smaller than the conduction electron mean free path. Fig. 4.6b shows what happens to the spectrum in Fig. 4.6a when the finite size effect is incorporated, and we see that it has a significant effect for shells below 10 nm thickness, leading to much broader plasmon lineshapes. [Pg.53]

How then, can one recover some quantity that scales with the local charge on the metal atoms if their valence electrons are inherently delocalized Beyond the asymmetric lineshape of the metal 2p3/2 peak, there is also a distinct satellite structure seen in the spectra for CoP and elemental Co. From reflection electron energy loss spectroscopy (REELS), we have determined that this satellite structure originates from plasmon loss events (instead of a two-core-hole final state effect as previously thought [67,68]) in which exiting photoelectrons lose some of their energy to valence electrons of atoms near the surface of the solid [58]. The intensity of these satellite peaks (relative to the main peak) is weaker in CoP than in elemental Co. This implies that the Co atoms have fewer valence electrons in CoP than in elemental Co, that is, they are definitely cationic, notwithstanding the lack of a BE shift. For the other compounds in the MP (M = Cr, Mn, Fe) series, the satellite structure is probably too weak to be observed, but solid solutions Coi -xMxl> and CoAs i yPv do show this feature (vide infra) [60,61]. [Pg.116]

The transition-metal and rare-earth core-line XPS spectra show little, if any, BE shifts at all. Nevertheless, information about atomic charge and valence states can be extracted by examining other features in the spectra. The plasmon loss satellite intensity found in the spectra of Co-containing compounds provides a particularly useful handle on the Co charge. The lineshapes of RE spectra are characteristic of their valence state, as seen in the distinction between trivalent and tetravalent cerium in CeFe4Pni2 compounds. [Pg.139]


See other pages where Plasmon lineshape is mentioned: [Pg.114]    [Pg.114]    [Pg.103]    [Pg.128]    [Pg.2]    [Pg.106]    [Pg.28]   


SEARCH



Lineshapes

© 2024 chempedia.info