Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasmodium falciparum infection

Lauer, S. A. Chatterjee, S. Haidar, K. Uptake and hydrolysis of sphingomyelin analogues in Plasmodium falciparum-infected red cells. Mol. Biochem. Parasitol. 2001, 115, 275-281. [Pg.179]

Gowda, A.S.P., Madhunapantula, S.V., Achur, R.N., Valiyaveettil, M., Bhavanandan, V.P., and Gowda, D. C. (2007) Structural basis for the adherence of plasmodium falciparum-infected erythrocytes to chon-droitin 4-sulfate and design of novel photoactivable reagents for the identification of parasite adhesive proteins./. Biol. Chem. 282, 916-928. [Pg.1068]

Noteberg, D., Hamelink, E., Hulten, J., Wahlgren, M., Vrang, L. etal, Design and synthesis of Plasmepsin I and Plasmepsin Ii inhibitors with activity in Plasmodium Falciparum-infected cultured human erythrocytes,... [Pg.42]

Udomsangpetch R., Pipitaporn B., Silamut K., Pinches R., Kyes S., Looareesuwan S., Newbold C. and White N. J. (2002) Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA. 99, 11825-11829. [Pg.443]

Alonso, P. L., Sacarlal, J., Aponte, J. J., Leach, A., Macete, E., Milman, J., et al. (2004). Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children Randomised controlled trial [see comment]. Lancet, 364(9443), 1411-1420, 1422. [Pg.453]

MacArthur J, Stennies GM, Macheso A, Kolczak MS, Green MD, Ali D, Barat LM, Kazembe PN, Ruebush TK 2nd. Efficacy of mefloquine and sulfadoxine-pyrimethamine for the treatment of uncomplicated Plasmodium falciparum infection in Machinga District, Malawi, 1998. Am J Trop Med Hyg 2001 65(6) 679-84. [Pg.2237]

Wright, P S, Cross-Doersen, D E, Schroeder, K K, Bowlin, T L, McCann, P P, Bitonti, A J, Dismption of Plasmodium falciparum-infected erythrocyte cytoadherence to human melanoma cells with inhibitors of glycoprotein processing, Biochem. Pharmacol, 41, 1855-1861, 1991. [Pg.438]

Alecrim WD, Espinosa FEM, Alecrim MGC. Plasmodium falciparum infection in the pregnant patient. Infect Dis Clin North Am 2000 14 83— 95. [Pg.2077]

Verdier, F., Le Bras, J., Clavier, F., Hatin, I., and Blayo, M. (1985) Chloroquine uptake by Plasmodium falciparum-infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob. Agents Chemother. 27(4), 561-564. [Pg.237]

Sherman, I. W. and Winogard, E. (1990) Antigens on Plasmodium falciparum infected erythrocytes are not parasite derived. Parasitol. Today 6, 317-320. [Pg.238]

Newbold, C. I. and Marsh, K. (1990) Antigens on the Plasmodium falciparum infected erythrocytes surface are parasite derived. A reply. Parasitol. Today 6,320-322. [Pg.238]

Ockenhouse, C.F., Betageri, R., Springer, T.A., Staunton, D.E., 1992. Plasmodium falciparum-infected erythrocytes bind IC AM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Cell 68, 63-69. [Pg.227]

Aikawa, M., Rabbege, J. R., Udeinya, I., and Miller, L. H. (1983). Electron microscopy of knobs in Plasmodium falciparum-infected erythrocytes. J. Parasitol. 69,435-437. [Pg.325]

Arie, T., Fairhurst, R. M., Brittain, N. J., Wellems, T. E., and Dvorak, J. A. (2005). Hemoglobin C modulates the surface topography of Plasmodium falciparum-infected erythrocytes. ]. Struct. Biol. 150,163-169. [Pg.326]

Atamna, H., Pascarmona, G., and Ginsburg, H. (1994). Hexose-monophosphate shunt activity inb Plasmodium falciparum-infected erythrocytes and free parasites. Mol. Biochem. Parasitol. 67, 79-89. [Pg.327]

Chakravorty, S. J., Carret, C., Nash, G. B., Ivens, A., Szestak, T., and Craig, A. G. (2007). Altered phenotype and gene transcription in endothelial cells, induced by Plasmodium falciparum-infected red blood cells Pathogenic or protective Int. J. Parasitol. 37,975-987. [Pg.335]

Chen, Q., Pettersson, F., Vogt, A. M., Schmidt, B., Ahuja, S., Liljestrom, P., and Wahlgren, M. (2004). Immunization with PfEMPl-DBLlalpha generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine 22, 2701-2712. [Pg.335]

Cooke, B. M., Lingelbach, K., Bannister, L. H., and Tilley, L. (2004a). Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol. 20,581-589. [Pg.337]

Eda, S., and Sherman, I. W. (2004). Plasmodium falciparum-infected erythrocytes bind to the RGD motif of fibronectin via the band 3-related adhesin. Exp. Parasitol. 107,157-162. [Pg.341]

Ginsburg, H., Krugliak, M., Eidelman, O., and Cabantchik, Z. I. (1983). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 8,177-190. [Pg.346]

Helmby, H., Cavelier, L., Pettersson, U., and Wahlgren, M. (1993). Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infect. Immun. 61,284—288. [Pg.349]

Krugliak, M., and Ginsburg, H. (2006). The evolution of the new permeability pathways in Plasmodium falciparum-infected erythrocytes—a kinetic analysis. Exp. Parasitol. 114, 253-258. [Pg.357]

Lanzer, M., Wickert, H., Krohne, G., Vincensini, L., and Braun Breton, C. (2006). Maurer s clefts A novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int. J. Parasitol. 36, 23-36. [Pg.359]

Leech, J. H., Barnwell, J. W., Miller, L. H., and Howard, R. J. (1984). Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. ]. Exp. Med. 159,1567-1575. [Pg.359]

Lingelbach, K., and Przyborski, J. M. (2006). The long and winding road protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte. Mol. Biochem. Parasitol. 147,1-8. [Pg.360]

Luersen, K., Walter, R. D., and Muller, S. (2000). Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem. ]. 346(Pt 2), 545-552. [Pg.361]

Maier, A. G., Rug, M., O Neill, M. T., Beeson, J. G., Marti, M., Reeder, J., and Cowman, A. F. (2007). Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMPl to the Plasmodium falciparum-infected erythrocyte surface. Blood 109, 1289-1297. [Pg.361]

Nagao, E., Seydel, K. B., and Dvorak, J. A. (2002). Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection. Exp. Parasitol. 102,57-59. [Pg.366]

Nawabi, P., Lykidis, A., Ji, D., and Haidar, K. (2003). Neutral-lipid analysis reveals elevation of acylglycerols and lack of cholesterol esters in Plasmodium falciparum-infected erythrocytes. Eukaryot. Cell 2,1128-1131. [Pg.366]


See other pages where Plasmodium falciparum infection is mentioned: [Pg.233]    [Pg.238]    [Pg.807]    [Pg.149]    [Pg.177]    [Pg.360]    [Pg.890]    [Pg.2199]    [Pg.196]    [Pg.205]    [Pg.337]    [Pg.348]    [Pg.351]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Falciparum

Plasmodia

Plasmodium falciparum

Plasmodium falciparum infected red blood cells

Plasmodium falciparum infected red cells

Plasmodium falciparum infection chloroquine-resistant

Plasmodium falciparum infection treatment

© 2024 chempedia.info