Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma emission spectroscopy sample introduction systems

Gunn et al. [44] described the apphcation of a graphite-filament electrothermal vaporization apparatus as a sample introduction system for optical emission spectroscopy with an inductively coupled argon plasma source. Good detection levels were reported for the elements, and details of the interfacing requirements between the ICP and the graphite filament were explored. [Pg.160]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

Atomic emission spectroscopy is one of the most useful and commonly used techniques for analyses of metals and nonmetals providing rapid, sensitive results for analytes in a wide variety of sample matrices. Elements in a sample are excited during their residence in an analytical plasma, and the light emitted from these excited atoms and ions is then collected, separated and detected to produce an emission spectrum. The instrumental components which comprise an atomic emission system include (1) an excitation source, (2) a spectrometer, (3) a detector, and (4) some form of signal and data processing. The methods discussed will include (1) sample introduction, (2) line selection, and (3) spectral interferences and correction techniques. [Pg.45]


See other pages where Plasma emission spectroscopy sample introduction systems is mentioned: [Pg.60]    [Pg.5446]    [Pg.5445]    [Pg.491]    [Pg.97]    [Pg.46]    [Pg.46]    [Pg.377]    [Pg.97]    [Pg.109]    [Pg.1555]    [Pg.240]    [Pg.45]   


SEARCH



Emission sampling

Emission spectroscopy)

Plasma emission spectroscopy

Plasma spectroscopy

Sample introduction

Sample introduction system

Sampling system

Spectroscopy introduction

Spectroscopy systems

© 2024 chempedia.info