Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plant flavoproteins

The cytochromes are iron-containing hemoproteins in which the iron atom oscillates between Fe + and Fe + during oxidation and reduction. Except for cytochrome oxidase (previously described), they are classified as dehydrogenases. In the respiratory chain, they are involved as carriers of electrons from flavoproteins on the one hand to cytochrome oxidase on the other (Figure 12-4). Several identifiable cytochromes occur in the respiratory chain, ie, cytochromes b, Cp c, a, and (cytochrome oxidase). Cytochromes are also found in other locations, eg, the endoplasmic reticulum (cytochromes P450 and h, and in plant cells, bacteria, and yeasts. [Pg.88]

Figure 12.2a. Photosynthetic Z-scheme for green plants. Abbreviations not included in the text are PQ, plastiquinone Cyt bse, a form of cytochrome b absorbing at 564 nm FD, ferredoxin FP a flavoprotein. Long vertical arrows indicate steps arising from photoactivation of pigment reaction centers dashed arrows indicate uncertain pathways.0185... Figure 12.2a. Photosynthetic Z-scheme for green plants. Abbreviations not included in the text are PQ, plastiquinone Cyt bse, a form of cytochrome b absorbing at 564 nm FD, ferredoxin FP a flavoprotein. Long vertical arrows indicate steps arising from photoactivation of pigment reaction centers dashed arrows indicate uncertain pathways.0185...
Molybdenum (Mo) is present in all plant, human, and animal tissues, and is considered an essential micronutrient for most life forms (Schroeder et al. 1970 Underwood 1971 Chappell and Peterson 1976 Chappell et al. 1979 Goyer 1986). The first indication of an essential role for molybdenum in animal nutrition came in 1953 when it was discovered that a flavoprotein enzyme, xanthine oxidase, was dependent on molybdenum for its activity (Underwood 1971). It was later determined that molybdenum is essential in the diet of lambs, chicks, and turkey poults (Underwood 1971). Molybdenum compounds are now routinely added to soils, plants, and waters to achieve various enrichment or balance effects (Friberg et al. 1975 Friberg and Lener 1986). [Pg.1544]

Nicotinic acid derivatives occur in biologic materials as the free acid, as nicotinamide, and in two coenzymatic forms nicotinamide adenine dinucleotide (NAD), and nicotinamide adenine dinucleotide phosphate (NADP). These coenzymes act in series with flavoprotein enzymes and, like them, are hydrogen acceptors or, when reduced, donors. Several plants and bacteria use a metabolic pathway for the formation of nicotinic acid that is different from the tryptophan pathway used by animals and man (B39). [Pg.199]

Figure 6.1 Pathways involved in glucose oxidation by plant cells (a) glycolysis, (b) Krebs cycle, (c) mitochondrial cytochrome chain. Under anoxic conditions. Reactions 1, 2 and 3 of glycolysis are catalysed by lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase, respectively. ATP and ADP, adenosine tri- and diphosphate NAD and NADHa, oxidized and reduced forms of nicotinamide adenine dinucleotide PGA, phosphoglyceraldehyde PEP, phosphoenolpyruvate Acetyl-CoA, acetyl coenzyme A FP, flavoprotein cyt, cytochrome e, electron. (Modified from Fitter and Hay, 2002). Reprinted with permission from Elsevier... Figure 6.1 Pathways involved in glucose oxidation by plant cells (a) glycolysis, (b) Krebs cycle, (c) mitochondrial cytochrome chain. Under anoxic conditions. Reactions 1, 2 and 3 of glycolysis are catalysed by lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase, respectively. ATP and ADP, adenosine tri- and diphosphate NAD and NADHa, oxidized and reduced forms of nicotinamide adenine dinucleotide PGA, phosphoglyceraldehyde PEP, phosphoenolpyruvate Acetyl-CoA, acetyl coenzyme A FP, flavoprotein cyt, cytochrome e, electron. (Modified from Fitter and Hay, 2002). Reprinted with permission from Elsevier...
Putidaredoxin. Cushman et al. (36) isolated a low molecular iron-sulfur protein from camphor-grown Pseudomonas putida. This protein, putidaredoxin, is similar to the plant type ferredoxins with two irons attached to two acid-labile sulfur atoms (37). It has a molecular weight of 12,000 and shows absorption maxima at 327, 425 and 455 nm. Putidaredoxin functions as an electron transfer component of a methylene hydroxylase system involved in camphor hydroxylation by P. putida. This enzyme system consists of putidaredoxin, flavoprotein and cytochrome P.cQ (38). The electron transport from flavoprotein to cytochrome P.cq is Smilar to that of the mammalian mixed-function oxidase, but requires NADH as a primary electron donor as shown in Fig. 4. In this bacterial mixed-function oxidase system, reduced putidaredoxin donates an electron to substrate-bound cytochrome P. g, and the reduced cytochrome P. g binds to molecular oxygen. One oxygen atom is then used for substrate oxidation, and the other one is reduced to water (39, 40). [Pg.113]

The molecular weight of these proteins ranges from 14,000 to 23,000 as shown in Table 2. Organisms which have been reported to produce flavoproteins include several species of bacteria and alga. However, unlike the case with ferredoxins, these proteins have not yet been found in higher plants and animals. [Pg.115]

Certain flavoproteins act in a quite different role as light receptors. Cryptochromes are a family of flavoproteins, widely distributed in the eukaryotic phyla, that mediate the effects of blue light on plant development and the effects of light on mammalian circadian rhythms (oscillations in physiology and biochemistry, with a 24-hour period). The cryptochromes are homologs of another family of flavoproteins, the photolyases. Found in both prokaryotes and eukaryotes, photolyases use the energy of absorbed light to repair chemical defects inDNA. [Pg.516]

In addition to NAD and flavoproteins, three other types of electron-carrying molecules function in the respiratory chain a hydrophobic quinone (ubiquinone) and two different types of iron-containing proteins (cytochromes and iron-sulfur proteins). Ubiquinone (also called coenzyme Q, or simply Q) is a lipid-soluble ben-zoquinone with a long isoprenoid side chain (Fig. 19-2). The closely related compounds plastoquinone (of plant chloroplasts) and menaquinone (of bacteria) play roles analogous to that of ubiquinone, carrying electrons in membrane-associated electron-transfer chains. Ubiquinone can accept one electron to become the semi-quinone radical ( QH) or two electrons to form ubiquinol (QH2) (Fig. 19-2) and, like flavoprotein carriers, it can act at the junction between a two-electron donor and a one-electron acceptor. Because ubiquinone is both small and hydrophobic, it is freely diffusible within the lipid bilayer of the inner mitochondrial membrane and can shuttle reducing equivalents between other, less mobile electron carriers in the membrane. And because it carries both electrons and protons, it plays a central role in coupling electron flow to proton movement. [Pg.693]

Iron-sulfur clusters are found in flavoproteins such as NADH dehydrogenase (Chapter 18) and trimethylamine dehydrogenase (Fig. 15-9) and in the siroheme-containing sulfite reductases and nitrite reductases.312 These two reductases are found both in bacteria and in green plants. [Pg.861]

Two ascorbate radicals can react with each other in a disproportionation reaction to give ascorbate plus dehydroascorbate. However, most cells can reduce the radicals more directly. In many plants this is accomplished by NADH + H+ using a flavoprotein monodehydroascorbate reductase.0 Animal cells may also utilize NADH or may reduce dehydroascorbate with reduced glutathione.CC/ff Plant cells also contain a very active blue copper ascorbate oxidase (Chapter 16, Section D,5), which catalyzes the opposite reaction, formation of dehydroascorbate. A heme ascorbate oxidase has been purified from a fungus. 11 1 Action of these enzymes initiates an oxidative degradation of ascorbate, perhaps through the pathway of Fig. 20-2. [Pg.1067]

Figure 1. Functions of animal, plant, and microbial flavoproteins and... Figure 1. Functions of animal, plant, and microbial flavoproteins and...
Mitochondria contain ubiquinone (also known as coenzyme Q), which differs from plastoquinone A (Chapter 5, Section 5.5B) by two methoxy groups in place of the methyl groups on the ring, and 10 instead of 9 isoprene units in the side chain. A c-type cytochrome, referred to as Cyt Ci in animal mitochondria, intervenes just before Cyt c a h-type cytochrome occurring in plant mitochondria is involved with an electron transfer that bypasses cytochrome oxidase on the way to 02. The cytochrome oxidase complex contains two Cyt a plus two Cyt a3 molecules and copper on an equimolar basis with the hemes (see Fig. 5-16). Both the Fe of the heme of Cyt a3 and the Cu are involved with the reduction of O2 to H20. Cytochromes a, >, and c are in approximately equal amounts in mitochondria (the ratios vary somewhat with plant species) flavoproteins are about 4 times, ubiquinones 7 to 10 times, and pyridine nucleotides 10 to 30 times more abundant than are individual cytochromes. Likewise, in chloro-plasts the quinones and the pyridine nucleotides are much more abundant than are the cytochromes (see Table 5-3). [Pg.306]

Nicotinamide nucleotide transhydrogenases may be divided into two classes. One class is present in certain bacteria, and possibly in some plants, is an easily extractable, water-soluble enzyme is not functionally linked to the energy-transfer system of the bacterial membrane is a fiavoprotein and is specific for the 4B-hydrogen atom of both NADH and NADPH. The other class is present in both certain bacteria and in mitochondria is a firmly membrane-bound water-insoluble enzyme is functionally linked to the energy-transfer system of the bacterial or mitochondrial membrane is not known to be a flavoprotein and is specific for the 4A-hydrogen atom of NADH and the 4B-hydrogen atom of NADPH. For the sake of convenience, the two classes of enzyme will be referred to below as BB-specific and AB-specific transhydrogenases, respectively. [Pg.52]

The photosynthetic apparatus of green plants and cyanobacteria oxidizes water and transfers electrons to NADP, with a net gain in electrochemical potential of 1.13 eV (at pH 7), utilizing the energy of two light quanta per electron. The complete system is contained in the chloroplasts, and is localized within the thylakoid membranes, with the exception of the electron carrier ferredoxin, which is in solution in the stroma, and serves to transfer electrons from the reducing end of photosystem I (PS I) to a membrane-bound flavoprotein which then reduces NADP, and of the copper protein plastocyanin (PC, the electron donor to PS I), which is in solution in the internal phase of thylakoids. [Pg.2]


See other pages where Plant flavoproteins is mentioned: [Pg.267]    [Pg.267]    [Pg.111]    [Pg.108]    [Pg.131]    [Pg.275]    [Pg.764]    [Pg.90]    [Pg.110]    [Pg.384]    [Pg.36]    [Pg.36]    [Pg.40]    [Pg.152]    [Pg.765]    [Pg.76]    [Pg.798]    [Pg.941]    [Pg.1321]    [Pg.1446]    [Pg.171]    [Pg.720]    [Pg.570]    [Pg.314]    [Pg.311]    [Pg.311]    [Pg.451]    [Pg.53]    [Pg.44]    [Pg.500]    [Pg.501]    [Pg.502]    [Pg.502]    [Pg.2299]    [Pg.819]    [Pg.54]   
See also in sourсe #XX -- [ Pg.313 ]




SEARCH



Flavoprotein

Flavoproteins

© 2024 chempedia.info