Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plane-wave density functional theory

Computer simulation studies have taken the lead in disclosing structural properties of HDA Si. In particular, ab initio calculations are playing a significant role in predicting the structural properties of HDA Si [265, 266]. Ab initio molecular-dynamics (MD) simulations based on plane-wave density functional theory (DFT) were performed by Morishita [265] to investigate the... [Pg.61]

Abstract The surfaces of model metal oxides offer many fundamental examples where the outcome of a specific chemical reaction might be linked to the surface structure and local electronic properties. In this work the reaction of simple molecules such as ammonia, alcohols, carboxylic and amino acids is studied on two metal oxide single crystals rutile TiO CllO) and (001) and fluorite UOj(l 11). Studies are conducted with XPS, TPD, and Plane Wave Density Functional Theory (DFT). The effect of surface structure is outlined by comparing the TiOj(llO) rutile surface to those of TiOjCOOl), while the effect of surface point defects is mainly discussed in the case of stoichiometric and substoichiometric UOjClll). [Pg.133]

Implementation of Linear-Scaling Plane Wave Density Functional Theory on Parallel Computers. [Pg.278]

The pseudopotential density-functional technique is used to calculate total energies, forces on atoms and stress tensors as described in Ref. 13 and implemented in the computer code CASTEP. CASTEP uses a plane-wave basis set to expand wave-functions and a preconditioned conjugate gradient scheme to solve the density-functional theory (DFT) equations iteratively. Brillouin zone integration is carried out via the special points scheme by Monkhorst and Pack. The nonlocal pseudopotentials in Kleynman-Bylander form were optimized in order to achieve the best convergence with respect to the basis set size. 5... [Pg.20]

All calculations presented here are based on density-functional theory [37] (DFT) within the LDA and LSD approximations. The Kohn-Sham orbitals [38] are expanded in a plane wave (PW) basis set, with a kinetic energy cutoff of 70 Ry. The Ceperley-Alder expression for correlation and gradient corrections of the Becke-Perdew type are used [39]. We employ ah initio pseudopotentials, generated by use of the Troullier-Martins scheme [40], The coreradii used, in au, were 1.23 for the s, p atomic orbitals of carbon, 1.12 for s, p of N, 0.5 for the s of H, and 1.9, 2.0, 1.5, 1.97,... [Pg.79]

The electric-structure-calculation presented here is performed using the CASTEP computer code, which is based on density functional theory, aided by the CERIUS2 graphical front-end. The wave functions are expended in a plane wave basis set, and the effective potential of ions is described by ultrasoft pseudo potential. [Pg.229]

Space-coordinate density transformations have been used by a number of authors in various contexts related to density functional theory [26,27, 53-64, 85-87]. As the free-electron gas wavefunction is expressed in terms of plane waves associated with a constant density, these transformations were introduced by Macke in 1955 for the purpose of producing modified plane waves that incorporate the density as a variable. In this manner, the density could be then be regarded as the variational object [53, 54]. Thus, explicitly a set of plane waves (defined in the volume V in and having uniform density po = N/V) ... [Pg.173]

One interesting scheme based on density functional theory (DFT) is particularly appealing, because with the current power of the available computational facilities it enables the study of reasonably extended systems. DFT has been applied with a variety of basis sets (atomic orbitals or plane-waves) and potential formulations (all-electron or pseudopotentials) to complex nu-cleobase assemblies, including model systems [90-92] and realistic structures [58, 93-95]. DFT [96-98] is in principle an ab initio approach, as well as MP2//HF. However, its implementation in manageable software requires some approximations. The most drastic of all the approximations concerns the exchange-correlation (xc) contribution to the total DFT functional. [Pg.205]

The NEB method has been applied successfiilly to a wide range of problems, for example studies of diffusion processes at metal surfaces,28 multiple atom exchange processes observed in sputter deposition simulations,29 dissociative adsorption of a molecule on a surface,25 diffusion of rigid water molecules on an ice Ih surface,30 contact formation between metal tip and a surface,31 cross-slip of screw dislocations in a metal (a simulation requiring over 100,000 atoms in the system, and a total of over 2,000,000 atoms in the MEP calculation),32 and diffusion processes at and near semiconductor surfaces (using a plane wave based Density Functional Theory method to calculate the atomic forces).33 In the last two applications the calculation was carried out on a cluster of workstations with the force on each image calculated on a separate node. [Pg.277]

The main purpose of this chapter is to present the basics of ab initio molecular dynamics, focusing on the practical aspects of the simulations, and in particular, on modeling chemical reactions. Although CP-MD is a general molecular dynamics scheme which potentially can be applied in combination with any electronic structure method, the Car-Parinello MD is usually implemented within the framework of density functional theory with plane-waves as the basis set. Such an approach is conceptually quite distant from the commonly applied static approaches of quantum-chemistry with atom-centered basis sets. Therefore, a main... [Pg.226]

In the present chapter, we will focus on the simulation of the dynamics of photoexcited nucleobases, in particular on the investigation of radiationless decay dynamics and the determination of associated characteristic time constants. We use a nonadiabatic extension of ab initio molecular dynamics (AIMD) [15, 18, 21, 22] which is formulated entirely within the framework of density functional theory. This approach couples the restricted open-shell Kohn-Sham (ROKS) [26-28] first singlet excited state, Su to the Kohn-Sham ground state, S0, by means of the surface hopping method [15, 18, 94-97], The current implementation employs a plane-wave basis set in combination with periodic boundary conditions and is therefore ideally suited to condensed phase applications. Hence, in addition to gas phase reference simulations, we will also present nonadiabatic AIMD (na-AIMD) simulations of nucleobases and base pairs in aqueous solution. [Pg.267]

DOS = Density of states BO = Bloch orbital IBZ = Irreducible Brillouin zone BZ = Brillouin zone PZ = Primitive zone COOP = Crystal orbital overlap population CDW = Charge density wave MO = Molecular orbital DFT = Density functional theory HF = Hartree-Fock LAPW = Linear augmented plane wave LMTO = Linear muffin tin orbital LCAO = Linear combination of atomic orbitals. [Pg.1287]


See other pages where Plane-wave density functional theory is mentioned: [Pg.892]    [Pg.57]    [Pg.431]    [Pg.186]    [Pg.265]    [Pg.174]    [Pg.178]    [Pg.148]    [Pg.165]    [Pg.259]    [Pg.393]    [Pg.892]    [Pg.57]    [Pg.431]    [Pg.186]    [Pg.265]    [Pg.174]    [Pg.178]    [Pg.148]    [Pg.165]    [Pg.259]    [Pg.393]    [Pg.4]    [Pg.154]    [Pg.635]    [Pg.17]    [Pg.27]    [Pg.131]    [Pg.282]    [Pg.945]    [Pg.306]    [Pg.269]    [Pg.282]    [Pg.235]    [Pg.256]    [Pg.329]    [Pg.129]    [Pg.823]    [Pg.826]    [Pg.52]    [Pg.17]    [Pg.26]    [Pg.247]    [Pg.374]    [Pg.416]    [Pg.96]    [Pg.336]    [Pg.413]   


SEARCH



Density functional theory, wave

Density functional theory, wave function

Density waves

Plane theory

Plane waves

Plane-wave function

Theories wave theory

Wave theory

© 2024 chempedia.info