Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Piperidine amine

Figure 3. HRu(CO)s]n-catalyzed carbonyla-tion of piperidine amine dependence at 75°C,... Figure 3. HRu(CO)s]n-catalyzed carbonyla-tion of piperidine amine dependence at 75°C,...
Piperidine amines, (III), prepared by Thom (3), V-ureidoalkyl-piperidines, (IV), prepared by Ko (4), and bipiperidine derivatives, (V), prepared by Rigby (5) were effective as CCRj/CCRj chemokine antagonists and used in treating asthma and related allergic diseases as well as autoimmune pathologies such as rheumatoid arthritis. [Pg.142]

The phenethyl alcohol 11 was then converted to azide 12 utilizing zinc azide under Mitsunobu conditions. The trisubstituted olefin and aUcyl azide were simultaneously reduced under hydrogenation conditions to produce the desired piperidine ring. Amine 13 was then acetylated and the BOC (t-butoxycarbonyl) group was removed to provide piperidine amine 2 in >99% enantiomeric excess (ee) (Scheme 5.1). [Pg.66]

The ethanol solntion was then treated with HCl (5 to 6 N in i-PrOH) at 50°C for 6 h (completion of the reaction was observed) and stirred overnight at room temperature. The excess HCl was then qnenched with imidazole and after solvent-switching to CH3CN (solvent composition CHjCNiEtOH, 10 to 20 1), the desired HCl salt of piperidine amine 2 crystallized out in >99% ee (81% isolated yield from before Ecosorb treatment >99 wt%, >99.7 % ee) (Scheme 5.22). [Pg.79]

PHYSICOCHEMICAL ANALYSIS OF AMINES IN BINARY LIQUID SYSTEMS. III. SYSTEMS. PIPERIDINE-AMINES. [Pg.175]

Hydrogen sulfide piperidine Amines from azides s. 31, 614... [Pg.336]

Colourless liquid with a characteristic ammo-niacal smell m.p. 9 C, b.p. 106°C. Miscible with water. It is present in pepper as the alkaloid piperine from which it can be obtained by healing with alkali. It can also be prepared by the reduction of pyridine, either electrolytically or by other means. Piperidine is a strong base, behaving like the aliphatic amines. [Pg.315]

It is now applied more widely to include malonic acid derivatives, such as diethyl monoethyl-malonate, ethyl cyanacetate, etc. Various amines may be used as catalysts, and usually the most effective is piperidine (hexahydro-pyridine) a mixture of piperidine and pyridine, or pyridine alone, is also often used. [Pg.279]

B) Secondary amines, (i) Aromatic amines. Monomethyl and monoethylaniline, diphenylamine. (ii) Aliphatic and other amines. Diethyhmine, di-n-propylamine, di-isopropylamine. Also piperidine piperazine diethylene-diamine). [Pg.317]

Knoevenagel reaction. The condensation of an aldehyde with an active methylene compound (usually malonic acid or its derivatives) in the presence of a base is generally called the Knoevenagel reaction. Knoevenagel found that condensations between aldehydes and malonic acid are effectively catalysed by ammonia and by primary and secondary amines in alcoholic solution of the organic amines piperidine was regarded as the best catalyst. [Pg.710]

The N-basicity of the commonly used amines (pyrrolidine > piperidine > morpholine) drops by 2-3 orders of magnitude as a consequence of electron pair delocalization in the corresponding enamines. This effect is most pronounced in morpholino enamines (see table below). Furthermore there is a tendency of the five-membered ring to form an energetically favorable exocyclic double bond. This causes a much higher reactivity of pyrroUdino enamines as compared to the piperidino analogues towards electrophiles (G.A. Cook, 1969). [Pg.13]

Like butadiene, allene undergoes dimerization and addition of nucleophiles to give 1-substituted 3-methyl-2-methylene-3-butenyl compounds. Dimerization-hydration of allene is catalyzed by Pd(0) in the presence of CO2 to give 3-methyl-2-methylene-3-buten-l-ol (1). An addition reaction with. MleOH proceeds without CO2 to give 2-methyl-4-methoxy-3-inethylene-1-butene (2)[1]. Similarly, piperidine reacts with allene to give the dimeric amine 3, and the reaction of malonate affords 4 in good yields. Pd(0) coordinated by maleic anhydride (MA) IS used as a catalyst[2]. [Pg.450]

Other Compounds. Primary and secondary amines add 1,4- to isoprene (75). For example, dimetbylamine in ben2ene reacts with isoprene in the presence of sodium or potassium to form dimetby1(3-metby1-2-buteny1)amine. Similar results are obtained with diethylamine, pyrroHdine, and piperidine. Under the same conditions, aniline and /V-metbylaniline do not react. Isoprene reacts with phenol in the presence of aluminum phenoxide (76) or concentrated phosphoric acid (77) to give complex products. [Pg.466]

Organic amines, eg, pyridine and piperidine, have also been used successfully as catalysts in the reactions of organosilanes with alcohols and silanols. The reactions of organosilanes with organosilanols lead to formation of siloxane bonds. Nickel, zinc, and tin also exhibit a catalytic effect. [Pg.26]

Protonated /V-chloroalkyl amines under the influence of heat or uv light rearrange to piperidines or pyrroHdines (Hofmann-Lriffler reaction) (88). The free-radical addition of alkyl and dialkyl-/V-chloramines to olefins and acetylenes yields P-chloroalkji-, P-chloroalkenyl-, and 8-chloroalkenylamines (89). Various N-hiomo- and N-chloropolyfluoroaLkylarnines have been synthesized whose addition products to olefinic double bonds can be photolyzed to fluoroazaalkenes (90). [Pg.455]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

A nitrogen atom at X results in a variable downfield shift of the a carbons, depending in its extent on what else is attached to the nitrogen. In piperidine (45 X = NH) the a carbon signal is shifted by about 20 p.p.m., to ca. S 47.7, while in A-methylpiperidine (45 X = Me) it appears at S 56.7. Quaternization at nitrogen produces further effects similar to replacement of NH by A-alkyl, but simple protonation has only a small effect. A-Acylpiperidines show two distinct a carbon atoms, because of restricted rotation about the amide bond. The chemical shift separation is about 6 p.p.m., and the mean shift is close to that of the unsubstituted amine (45 X=NH). The nitroso compound (45 X = N—NO) is similar, but the shift separation of the two a carbons is somewhat greater (ca. 12 p.p.m.). The (3 and y carbon atoms of piperidines. A- acylpiperidines and piperidinium salts are all upfield of the cyclohexane resonance, by 0-7 p.p.m. [Pg.15]

With secondary amines such as piperidine or dimethylamine the formal products (169) of cine substitution are obtained with primary amines e.g. /-butylamine), in addition to the displacement product (173), a rearranged product (174) is obtained in which the nitrogen-bearing methyl becomes exocyclic 80CC123). Earlier studies on the reaction of... [Pg.75]

If there is no phenyl substituent in the 3-position the amination ability decreases. The acyloxaziridine (104) yields only 11% of a semicarbazide derivative with piperidine. In the presence of strong bases an intramolecular amination competes. Compound (104) reacts with methoxide within a couple of seconds to give phenylhydrazine carboxylic ester (106), and with cyclohexylamine to give the substituted semicarbazide (107). A diaziridinone (105) is assumed to be the common intermediate, formed by an intramolecular reaction from deprotonated (104) (67CB2600). [Pg.210]

Photoelectron spectroscopic studies show that the first ionization potential (lone pair electrons) for cyclic amines falls in the order aziridine (9.85 eV) > azetidine (9.04) > pyrrolidine (8.77) >piperidine (8.64), reflecting a decrease in lone pair 5-character in the series. This correlates well with the relative vapour phase basicities determined by ion cyclotron resonance, but not with basicity in aqueous solution, where azetidine (p/iTa 11.29) appears more basic than pyrrolidine (11.27) or piperidine (11.22). Clearly, solvation effects influence basicity (74JA288). [Pg.239]

Many other amines are catalytic in their action. One of these, piperidine, has been in use since the early patents of Castan. 5-7 pts phr of piperidine are used to give a system with a pot life of about eight hours. A typical cure schedule is three hours at 100°C. Although it is a skin irritant it is still used for casting of larger masses than are possible with diethylenetriamine and diethylaminopropylamine. [Pg.755]

Cyclic amines such as piperidine and its derivatives show substantial differences in the properties of the axial C-2 and C-6 versus the equatorial C-2 and C-6 C—H bonds. [Pg.70]


See other pages where Piperidine amine is mentioned: [Pg.343]    [Pg.2515]    [Pg.126]    [Pg.160]    [Pg.343]    [Pg.2515]    [Pg.2568]    [Pg.66]    [Pg.67]    [Pg.461]    [Pg.343]    [Pg.2515]    [Pg.126]    [Pg.160]    [Pg.343]    [Pg.2515]    [Pg.2568]    [Pg.66]    [Pg.67]    [Pg.461]    [Pg.169]    [Pg.175]    [Pg.563]    [Pg.141]    [Pg.220]    [Pg.321]    [Pg.25]    [Pg.112]    [Pg.292]    [Pg.292]    [Pg.294]    [Pg.29]    [Pg.210]    [Pg.746]    [Pg.3]   
See also in sourсe #XX -- [ Pg.832 , Pg.840 , Pg.841 ]




SEARCH



Piperidines, 2-aminated

© 2024 chempedia.info