Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PI-3-kinase

Insulin Receptor. Figure 1 Structure and function of the insulin receptor. Binding of insulin to the a-subunits (yellow) leads to activation of the intracellular tyrosine kinase ((3-subunit) by autophosphorylation. The insulin receptor substrates (IRS) bind via a phospho-tyrosine binding domain to phosphorylated tyrosine residues in the juxtamembrane domain of the (3-subunit. The receptor tyrosine kinase then phosphorylates specific tyrosine motifs (YMxM) within the IRS. These tyrosine phosphorylated motifs serve as docking sites for some adaptor proteins with SRC homology 2 (SH2) domains like the regulatory subunit of PI 3-kinase. [Pg.632]

Stimulation of the insulin receptor results in the activation of two major pathways [3] (i) the mitogen-activated protein (MAP) kinase cascade (discussed in chapter MAP kinase cascade) and (ii) the phospha-tidylinositol 3-kinase (PI 3-kinase) pathway which has been extensively studied in the context of the metabolic responses to insulin (summarized in Table 1 and Fig. 2). [Pg.633]

Fat Increased glucose transport GLUT4-translocation PI 3-kinase/Akt mediated translocation of GLUT4 into the plasma membrane. Potential involvement of atypical forms of protein kinase C (PKC and A)... [Pg.634]

Tyrosine phosphorylated IRS interacts with and activates PI 3-kinase [3]. Binding takes place via the SRC homology 2 (SH2) domain of the PI 3-kinase regulatory subunit. The resulting complex consisting of INSR, IRS, and PI 3-kinase facilitates interaction of the activated PI 3-kinase catalytic subunit with the phospholipid substrates in the plasma membrane. Generation of PI 3-phosphates in the plasma membrane reemits phospholipid dependent kinases (PDKl and PDK2) which subsequently phosphorylate and activate the serine/threonine kinase Akt (synonym protein... [Pg.634]

Concanavalin A is a plant lectin from the jack bean (Canavalia ensiformis) which binds with high affinity to mannose residues of glycoproteins. Concanavalin A is known to stimulate the tyrosine kinase activity of the INSR (3-subunit with consecutive activation of kinases downstream the insulin receptor (IRS, PI 3-kinase). It is believed that Concanavalin A stimulates the activation and autophosphorylation of the INSR kinase through aggregation of the receptor, although the precise mechanism of action is unclear. [Pg.636]

Vanadate (sodium orthovanadate or peroxovanadate) exhibits insulin-like effects in vitro (activation of insulin receptor tyrosine kinase, PI 3-kinase, Akt) and in vivo (diabetic rats, humans). These effects can be explained at least in part by the inhibition of phosphotyrosine phosphatases which deactivate the INSR tyrosine kinase. [Pg.636]

Wortmannin is a fungus-derived inhibitor of PI 3-kinase. The agent binds and inhibits the enzyme covalently and irreversibly. It is very potent and considered to be highly specific (IC5o in most cells in the low nanomolar range). [Pg.636]

LY294002 is a synthetic drug which reversibly inhibits PI 3-kinases. It is less toxic and also less potent than wortmannin. The IC50 in most cells is in the micromolar range. [Pg.636]

Neurotrophins (NGF brain-derived neurotrophic factor, BDNF neurotrophin-3, NT-3 NT-4 NT-6) are important regulators of neural survival, development, function, and plasticity of the vertebrate nervous system [1]. Neurotrophins generally function as noncovalently associated homodimers. They activate two different classes of receptors, through which signaling pathways can be activated, including those mediated by Ras and members of the cdc42/rac/rho G protein families, MAP kinase, PI-3 kinase, and Jun kinase cascades. [Pg.843]

Family of enzymes phosphorylating phosphatidylinositol (Ptdlns), PtdIns(4)phosphate, and PtdIns(4,5)phosphate in the 3-position. The Ptdlns(3 phospholipids are second messengers in processes like cell growth, cytoskeletal rearrangement, and vesicular transport. PI 3-kinases are heterodimers composed of a catalytic and a regulatory subunit. The enzymes are activated by insulin, many growth factors, and by a variety of cytokines. Their activity can be inhibited by wortmannin and LY294002. [Pg.962]

PTEN is a phosphatase, which is a product of a tumor suppressor gene. This phosphatase has an unusual broad specificity and can remove phosphate groups attached to serine, threonine, and tyrosine residues. It is believed that its ability to dephosphorylate phosphati-dylinositol (PI) 3,4,5-triphosphate, the product of PI-3 kinase, is responsible for its tumor suppressor effects. [Pg.1046]

S6K1 (also known as p70S6 kinase) is a serine/ threonine protein kinase which is involved in the regulation of translation by phosphorylating the 40S ribosomal protein S6. Insulin and several growth factors activate the kinase by phosphorylation in a PI 3-kinase dependent and rapamycin-sensitive manner. Phosphorylation of S6 protein leads to the translation of mRNA with a characteristic 5 polypyrimidine sequence motif. [Pg.1101]

Number of papers to date have shown that the CXCR4 receptors expressed in both neuronal and glial cells are functional and coupled to multiple intracellular pathways (Lazarini et al. 2003). The CXCR4 through pertussis toxin (PTX)- sensitive G proteins is coupled to at least two distinct signaling pathways (1) the first pathway, involving the activation of phosphatidylinositol- 3 (PI-3) kinase and extracellular signal... [Pg.273]

Smit MJ, Verdijk P, van der Raaij-Helmer EM, et al. CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood 2003 102(6) 1959-1965. [Pg.68]

Lee C, Tomkowicz B, Freedman BD, Collman RG. HIV-1 gpl20-induced TNF-a production by primary human macrophages is mediated by phosphatidylinositol-3 (PI-3) kinase and mitogen-activated protein (MAP) kinase pathways. J Leukoc Biol 2005 78(4) 1016-1023. [Pg.286]


See other pages where PI-3-kinase is mentioned: [Pg.186]    [Pg.497]    [Pg.635]    [Pg.636]    [Pg.843]    [Pg.844]    [Pg.921]    [Pg.976]    [Pg.1006]    [Pg.465]    [Pg.466]    [Pg.467]    [Pg.467]    [Pg.259]    [Pg.360]    [Pg.285]    [Pg.67]    [Pg.237]    [Pg.237]    [Pg.242]    [Pg.247]    [Pg.247]    [Pg.247]    [Pg.247]    [Pg.247]    [Pg.249]    [Pg.250]    [Pg.250]    [Pg.258]    [Pg.260]    [Pg.261]    [Pg.267]    [Pg.411]    [Pg.147]   
See also in sourсe #XX -- [ Pg.7 , Pg.45 , Pg.49 , Pg.107 , Pg.149 ]




SEARCH



PI 3-kinase signaling pathway

PI-3 kinase pathway

© 2024 chempedia.info