Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physicochemical properties atomic

A range of physicochemical properties such as partial atomic charges [9] or measures of the polarizabihty [10] can be calculated, for example with the program package PETRA [11]. The topological autocorrelation vector is invariant with respect to translation, rotation, and the conformer of the molecule considered. An alignment of molecules is not necessary for the calculation of their autocorrelation vectors. [Pg.411]

These first components of the autocorrelation coefficient of the seven physicochemical properties were put together with the other 15 descriptors, providing 22 descriptors. Pairwise correlation analysis was then performed a descriptor was eliminated if the correlation coefficient was equal or higher than 0.90, and four descriptors (molecular weight, the number of carbon atoms, and the first component of the 2D autocorrelation coefficient for the atomic polarizability and n-charge) were removed. This left 18 descriptors. [Pg.499]

This coding is performed in three steps (cf Chapter 8) First the 3D coordinates of the atoms arc calculated using the structure generator CORINA (COoRdlNAtes). Subsequently the program PETRA (Parameter Estimation for the Treatment of Reactivity Applications) is applied for calculating physicochemical properties such as charge distribution and polarizability. The 3D information and the physicochemical atomic properties are then used to code the molecule. [Pg.531]

Prediction of various physicochemical properties such as solubihty, lipophhicity log P, pfQ, number of H-donor and acceptor atoms, number of rotatable bonds, polar surface area), drug-likeness, lead-likeness, and pharmacokinetic properties (ADMET profile). These properties can be applied as a filter in the prescreening step in virtual screening. [Pg.605]

M. H. Rand, in G. Kubaschewski, ed., Plutonium Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Vol. 4, Special Issue No. 1, IAEA, Vienna, Austria, 1966. [Pg.205]

A colloid is a material that exists ia a finely dispersed state. It is usually a solid particle, but it may be a Hquid droplet or a gas bubble. Typically, coUoids have high surface-area-to-volume ratios, characteristic of matter ia the submicrometer-size range. Matter of this size, from approximately 100 nm to 5 nm, just above atomic dimensions, exhibits physicochemical properties that differ from those of both the constituent atoms or molecules and the macroscopic material. The differences ia composition, stmcture, and iateractions between the surface atoms or molecules and those on the iaterior of the colloidal particle lead to the unique character of finely divided material, specifics of which can be quite diverse (see Flocculating agents). [Pg.393]

While chemists differed on the relative importance of prediction and accommodation, it seems fair to approximate the consensus as follows. The reasons for accepting the periodic law are, in order of importance, [1] it accurately describes the correlation between physicochemical properties and atomic weights of nearly all known elements ... [Pg.67]

It was mentioned previously that the narrow range of concentrations in which sudden changes are produced in the physicochemical properties in solutions of surfactants is known as critical micelle concentration. To determine the value of this parameter the change in one of these properties can be used so normally electrical conductivity, surface tension, or refraction index can be measured. Numerous cmc values have been published, most of them for surfactants that contain hydrocarbon chains of between 10 and 16 carbon atoms [1, 3, 7], The value of the cmc depends on several factors such as the length of the surfactant chain, the presence of electrolytes, temperature, and pressure [7, 14], Some of these values of cmc are shown in Table 2. [Pg.293]

Relative contribution of each of these structures differs significantly and is determined by internal structural characteristics of the nitrones and by the influence of external factors, such as changes in polarity of solvent, formation of a hydrogen bond, and complexation and protonation. Changes in the electronic stmcture of nitrones, effected by any of these factors, which are manifested in the changes of physicochemical properties and spectral characteristics, can be explained, qualitatively, by analyzing the relative contribution of A-G structures. On the basis of a vector analysis of dipole moments of two series of nitrones (355), a quantum-chemical computation of ab initio molecular orbitals of the model nitrone CH2=N(H)0 and its tautomers, and methyl derivatives (356), it has been established that the bond in nitrones between C and N atoms is almost... [Pg.183]

Atomic volumes play an important role in relating physicochemical properties to biological effects. Most atoms in molecules are not entirely bounded by interatomic surfaces and an atomic volume is defined as a measure of the space enclosed by the intersection of the atom s zero-flux surfaces with some outer envelope of the density. The envelope with a value of 0.001 au is generally chosen as this has been shown to yield molecular sizes in good agreement with experimentally assigned van der Waals radii [16, 17]. A related property is the van der Waals surface area, which QTAIM determines by integrating an atom s exposed contribution to a molecule s isovalued surface. [Pg.210]

Internal boundaries are important in influencing the properties of single crystals in a number of ways. Impurities and other point defects, such as self-interstitials or vacancies, often congregate near to such interfaces. Moreover, because the regularity of the crystal structure is disrupted at the interface, unusual atom coordination can occur, allowing impurity atoms to be more readily accommodated. This in turn leads to differing, often enhanced, chemical reactivity, dissolution, and other physicochemical properties. [Pg.107]

Three-dimensional (3-D) descriptors of molecules quantify their shape, size, and other structural characteristics which arise out of the 3-D disposition and orientation of atoms and functional groups of molecules in space. A special class of 3-D indices is quantitative descriptors of chirality. If a molecule has one or more chiral centers, the spatial disposition of atoms can produce enantiomers, many of which will have the same magnitude of calculated and experimental physicochemical properties having, at the same time, distinct bioactivity profiles. Basak and coworkers [22] have developed quantitative chirality indices to discriminate such isomers according to their structural invariants which are based on the Cahn-Ingold-Prelog (CIP) rules. [Pg.481]


See other pages where Physicochemical properties atomic is mentioned: [Pg.471]    [Pg.471]    [Pg.419]    [Pg.423]    [Pg.91]    [Pg.286]    [Pg.68]    [Pg.158]    [Pg.69]    [Pg.431]    [Pg.42]    [Pg.75]    [Pg.202]    [Pg.382]    [Pg.398]    [Pg.206]    [Pg.44]    [Pg.197]    [Pg.12]    [Pg.19]    [Pg.119]    [Pg.356]    [Pg.142]    [Pg.199]    [Pg.127]    [Pg.201]    [Pg.209]    [Pg.342]    [Pg.194]    [Pg.252]    [Pg.792]    [Pg.157]    [Pg.211]    [Pg.62]    [Pg.218]    [Pg.388]    [Pg.493]    [Pg.116]    [Pg.71]   


SEARCH



Atomic property

Physicochemical propertie

Physicochemical property

© 2024 chempedia.info