Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical mechanism, charge

Rettig W, Rurack K, Sczepan M (2001) From cyanines to styryl bases - photophysical properties, photochemical mechanisms, and cation sensing abilities of charged and neutral polymethinic dyes. In Valeur B, Brochon JC (eds) New trends in fluorescence spectroscopy applications to chemical and life sciences. Springer, Berlin, pp 125-155... [Pg.98]

From Cyanines to Styryl Bases -Photophysical Properties, Photochemical Mechanisms, and Cation Sensing Abilities of Charged and Neutral Polymethinic Dyes, in Valeur B. and Brochon J. C. (Eds),... [Pg.349]

Importantly, all photoinduced processes share some common features. A photochemical reaction starts with the ground state structure, proceeds to an excited state structure and ends in the ground state structure. Thus, photochemical mechanisms are inherently multistep and involve intermediates between reactants and products. In the course of a photoinduced charge transfer reaction the molecule passes through several energy states with different activation barriers. This renders the electron transfer pathway quite complex. [Pg.46]

Not all sensitized photochemical reactions occur by electronic energy transfer. Schenck<77,78) has proposed that many sensitized photoreactions involve a sensitizer-substrate complex. The nature of this interaction could vary from case to case. At one extreme this interaction could involve a-bond formation and at the other extreme involve loose charge transfer or exciton interaction (exciplex formation). The Schenck mechanism for a photosensitized reaction is illustrated by the following hypothetical reaction ... [Pg.152]

We emphasize that the critical ion pair stilbene+, CA in the two photoactivation methodologies (i.e., charge-transfer activation as well as chloranil activation) is the same, and the different multiplicities of the ion pairs control only the timescale of reaction sequences.14 Moreover, based on the detailed kinetic analysis of the time-resolved absorption spectra and the effect of solvent polarity (and added salt) on photochemical efficiencies for the oxetane formation, it is readily concluded that the initially formed ion pair undergoes a slow coupling (kc - 108 s-1). Thus competition to form solvent-separated ion pairs as well as back electron transfer limits the quantum yields of oxetane production. Such ion-pair dynamics are readily modulated by choosing a solvent of low polarity for the efficient production of oxetane. Also note that a similar electron-transfer mechanism was demonstrated for the cycloaddition of a variety of diarylacetylenes with a quinone via the [D, A] complex56 (Scheme 12). [Pg.217]

Thermal (electrophilic) and photochemical (charge-transfer) nitrations share in common the rapid, preequilibrium formation of the EDA complex [ArH, PyNO ]. Therefore let us consider how charge-transfer activation, as established by the kinetic behaviour of the reactive triad in Scheme 12, relates to a common mechanism for electrophilic nitration. Since the reactive intermediates pertinent to the thermal (electrophilic) process, unlike those in its photochemical counterpart, cannot be observed directly, we must rely initially on the unusual array of nonconventional nitration products (Hartshorn, 1974 Suzuki, 1977) and the unique isomeric distributions as follows. [Pg.256]

For instance, Kochi and co-workers [89,90] reported the photochemical coupling of various stilbenes and chloranil by specific charge-transfer activation of the precursor donor-acceptor complex (EDA) to form rrans-oxetanes selectively. The primary reaction intermediate is the singlet radical ion pair as revealed by time-resolved spectroscopy and thus establishing the electron-transfer pathway for this typical Paterno-Biichi reaction. This radical ion pair either collapses to a 1,4-biradical species or yields the original EDA complex after back-electron transfer. Because the alternative cycloaddition via specific activation of the carbonyl compound yields the same oxetane regioisomers in identical molar ratios, it can be concluded that a common electron-transfer mechanism is applicable (Scheme 53) [89,90]. [Pg.217]

Remarkable enhancements of the unimolecular c-t isomerization of c-S with p-MeO and oxidation of S with -MeO are explained by charge-spin separation in such S Unimolecular c-t isomerization of such c-S proceeds with a chain mechanism, while regioselective oxidation occurs in such S because of the spin localization. Cycloreversion of t,c,t-TPCB occurs to give a a-St 2, while the photochemical cycloreversion of TPCB and t,t,t-TPCB gives Tr-St 2 and t-St /t-St pair, respectively. Radical cations of phosphorus compounds (9 and 10 form intramolecular rr-dimer between two Nps from which Np 2 forms. Formation of intermolecular a-dimer of aromatic acetylene (11 - and 12 -) and intramolecular dimer of 13 and diarylmethanoT was observed, and the n = 3 rule is not effective for intramolecular dimer -. [Pg.691]

Additions to Aromatic Hydrocarbons. A variety of photochemical additions to aromatic hydrocarbons have been reported. Benzene and its derivatives add to maleic anhydride74-76 as well as to simple olefins,77-80 isoprene,81 acetylene derivatives,79,82 and alcohols.83 The mechanism of the maleic anhydride-benzene reaction is discussed in Section IV. A.4. Naphthalene forms a photoadduct with dimethyl acetylenedicarboxylate62 and with acrylonitrile8211 while anthracene behaves similarly with maleic anhydride84 and with 1,2-benzanthracene.85 The photoaddition of several aromatic amines to anthracene has been reported to proceed via a charge transfer complex86,87 in fact, the majority of these addition reactions may proceed in this manner. [Pg.257]

If a solution, being in contact with an electrode, contains photosensitive atoms or molecules, irradiation of such a system may lead to photoelectro-chemical reactions or, to be more exact, electrochemical reactions with excited particles involved. In such reactions the electrons pass either from an excited particle to the electrode (the anodic process) or from the electrode to an excited particle (the cathodic process). In this case, an elementary act of charge transfer has much in common with ordinary (dark) electrochemical redox reactions, which opens a possibility of interpreting certain aspects of photochemical processes under consideration with the use of concepts developed for general quantum mechanical description of electrode processes. [Pg.303]


See other pages where Photochemical mechanism, charge is mentioned: [Pg.280]    [Pg.247]    [Pg.159]    [Pg.335]    [Pg.862]    [Pg.190]    [Pg.116]    [Pg.399]    [Pg.414]    [Pg.245]    [Pg.138]    [Pg.267]    [Pg.383]    [Pg.207]    [Pg.126]    [Pg.9]    [Pg.130]    [Pg.317]    [Pg.210]    [Pg.269]    [Pg.10]    [Pg.197]    [Pg.217]    [Pg.242]    [Pg.194]    [Pg.130]    [Pg.740]    [Pg.189]    [Pg.132]    [Pg.313]    [Pg.4]    [Pg.207]    [Pg.270]    [Pg.51]    [Pg.315]    [Pg.321]    [Pg.326]    [Pg.964]    [Pg.405]   


SEARCH



Photochemical mechanism, charge complexes

Photochemical mechanisms

© 2024 chempedia.info