Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphonium Salts 1 Preparation

A variety of aromatic phosphonium salts containing methoxy- and dimethylamino-groups has been prepared by the complex salt method  [Pg.16]

The reaction of triphenylphosphine hydrobromide with phenylpropiolic acid gives a mixture of the )- and (Z)-isomers of 2-carboxy-l-phenyl-vinyltriphenylphosphonium bromide (67), not just the (Z)-isomer as previously reported. ( )-2-Ethoxycarbonyl-l-phenylvinyltriphenylphos-phonium bromide (68) can be prepared in a similar reaction from ethyl phenylpropiolate. [Pg.16]

The addition of bromine to the ylide (69) gave a bromophosphonium salt which could be isolated. Dehydrohalogenation with dimethyl-formamide and lithium bromide afforded 1-phenylvinyltriphenylphos-phonium bromide (70). [Pg.16]

Quaternization of the phosphine (71) with methyl iodide gave the phosphonium salt in quantitative yield. [Pg.17]

Imido-bromides yield amidinotriphenylphosphonium salts (73) with iminophosphoranes. The fluxional nature of these salts is shown by the marked temperature dependence of the n.m.r. of the alkyl groups.  [Pg.17]


Table 14. Synthetic Utility of Fluorinated Phosphonium Salts Prepared From Dibromodifluoromethane [40 ... Table 14. Synthetic Utility of Fluorinated Phosphonium Salts Prepared From Dibromodifluoromethane [40 ...
Discotic phenanthrene derivatives have been prepared by Scherowsky and Chen [39]. Their synthesis is illustrated in Scheme 14. The phosphonium salt prepared by bromination of trimethoxybenzyl alcohol and reaction of the benzyl bromide with triphenyl phosphine was deprotonated and a Wittig reaction with 2,4-dimethoxy-or 2,3,4-trimethoxybenzaldehyde produced the stilbene. Photocyclization gives the phenanthrene, which can be demethylated with boron tribromide and acylated using the Steglich method. [Pg.1718]

Since the above phase transfer catalysed reactions worked particularly well with phosphonium salts prepared from benzyl halides, it was considered of interest to investigate reactions using phosphonium salts (4) prepared from chlorome thy late d polystyrenes, that is reactions where the supported species was the alkyl halide (see Scheme 2). Both linear and crosslinked chloromethylated polystyrenes reacted smoothly with triphenylphosphine to give polymers with residues (4). ° An alternative way of preparing the linear polymer is by copolymerisation of styrene and the salt (5). When the salts (4) were treated with various aldehydes in methylene chloride and... [Pg.38]

Towards a simple Lewis base, for example the proton, phosphine is a poorer electron donor than ammonia, the larger phosphorus atom being less able to form a stable covalent bond with the acceptor atom or molecule. Phosphine is, therefore, a much weaker base than ammonia and there is no series of phosphonium salts corresponding to the ammonium salts but phosphonium halides. PH4X (X = Cl, Br, I) can be prepared by the direct combination of phosphine with the appropriate hydrogen halide. These compounds are much more easily dissociated than ammonium halides, the most stable being the iodide, but even this dissociates at 333 K PH4I = PH3 -t- HI... [Pg.226]

A variation of the Madelung cyclization involves installing a functional group at the o-methyl group which can facilitate cyclization. For example, a triphenylphosphonio substituent converts the reaction into an intramolecular Wittig condensation. The required phosphonium salts can be prepared by starting with o-nitrobenzyl chloride or bromide[9]. The method has been applied to preparation of 2-alkyl and 2-arylindoles as well as to several 2-alkenylindoles. Tabic 3.2 provides examples. [Pg.28]

LRC-100Finish. The use of LRC-100 flame retardant for 50/50 polyester cotton blends has been reported (144). It is a condensation product of tetrakis(hydroxymethyl)-phosphonium salt (THP salt) and A/A7,A7 -trimethylphosphoramide [6326-72-3] (TMPA). The precondensate is prepared by heating the THP salt and TMPA in a 2.3-to-l.0-mole ratio for one hour at 60—65°C. It is appUed in conjunction with urea and trimethylolmelamine in a pad-dry-cure oxidation wash procedure. Phosphoms contents of 3.5—4.0% are needed to enable blends to pass the FF 3-71 Test. [Pg.491]

Textile Flame Retardants. The first known commercial appHcation for phosphine derivatives was as a durable textile flame retardant for cotton and cotton—polyester blends. The compounds are tetrakis(hydroxymethyl)phosphonium salts (10) which are prepared by the acid-cataly2ed addition of phosphine to formaldehyde. The reaction proceeds ia two stages. Initially, the iatermediate tris(hydroxymethyl)phosphine [2767-80-8] is formed. [Pg.319]

Phosphonium salts are readily prepared by the reaction of tertiary phosphines with alkyl or henzylic haHdes, eg, the reaction of tributylphosphine [998-40-3] with 1-chlorobutane [109-69-3] to produce tetrabutylphosphonium chloride [2304-30-5]. [Pg.319]

In addition to tetrabutylphosphonium chloride, typical phosphonium salts that can be produced include tetraoctylphosphonium bromide [23906-97-0], tetrabutylphosphonium acetate [17786-43-5] (monoacetic acid), and tetrabutylphosphonium bromide [3115-68-2]. Inmost cases, these compounds can be prepared with alternative counterions. [Pg.319]

Preparation and Properties of Organophosphines. AUphatic phosphines can be gases, volatile Hquids, or oils. Aromatic phosphines frequentiy are crystalline, although many are oils. Some physical properties are Hsted in Table 14. The most characteristic chemical properties of phosphines include their susceptabiUty to oxidation and their nucleophilicity. The most common derivatives of the phosphines include halophosphines, phosphine oxides, metal complexes of phosphines, and phosphonium salts. Phosphines are also raw materials in the preparation of derivatives, ie, derivatives of the isomers phosphinic acid, HP(OH)2, and phosphonous acid, H2P(=0)0H. [Pg.378]

Phosphonium salts may also be prepared by the addition of tertiary phosphines to carbonyl compounds or olefins (97). [Pg.382]

In the BASF synthesis, a Wittig reaction between two moles of phosphonium salt (vitamin A intermediate (24)) and C q dialdehyde (48) is the important synthetic step (9,28,29). Thermal isomerization affords all /ra/ j -P-carotene (Fig. 11). In an alternative preparation by Roche, vitamin A process streams can be used and in this scheme, retinol is carefully oxidized to retinal, and a second portion is converted to the C2Q phosphonium salt (49). These two halves are united using standard Wittig chemistry (8) (Fig. 12). [Pg.100]

Alkyl(or 3-aryl)-5-methylisoxazoles (306) were prepared by the regiospecific reaction of phosphonium salts (304) with hydroxylamine, followed by the treatment of the resulting isoxazole-containing phosphonium salts (305) with aqueous sodium hydroxide (80CB2852). [Pg.63]

The reaction of appropriate 1,3-diketones (302) with hydroxylamine hydrochloride in pyridine (79MI41601) has been reported to result in a regiospecific synthesis of 3-alkyl-5-arylisoxazoles, as has the reaction of an a -bromoenone (307) with hydroxylamine hydrochloride in ethanol in the presence of potassium carbonate (81H(16)145). Regiospecific syntheses of 5-alkyl-3-phenylisoxazoles also result from the reaction of an a-bromoenone (307) with hydroxylamine in the presence of sodium ethoxide (81H(16)145). 3-Aryl-5-methylisoxazoles were prepared from phosphonium salts (304) and hydroxylamine (80CB2852). [Pg.84]

Although unsynunetrically substituted amines are chiral, the configuration is not stable because of rapid inversion at nitrogen. The activation energy for pyramidal inversion at phosphorus is much higher than at nitrogen, and many optically active phosphines have been prepared. The barrier to inversion is usually in the range of 30-3S kcal/mol so that enantiomerically pure phosphines are stable at room temperature but racemize by inversion at elevated tempeiatuies. Asymmetrically substituted tetracoordinate phosphorus compounds such as phosphonium salts and phosphine oxides are also chiral. Scheme 2.1 includes some examples of chiral phosphorus compounds. [Pg.79]

Quite a number of cyclic phosphonium salts have been prepared over the years. We have not generally included compounds here which contain fewer than three potential binding sites in a ring unless they are mentioned as by-products in another reaction. Horner, Kunz and Walach have utilized the well-known alkylation approach to prepare cyclic phosphonium salts containing four phosphorus atoms. The formation of the cyclic tetraphosphonium salts is shown below in Eq. (6.14). [Pg.273]

Table Iti. Preparation of Halofluoromethanes front Halofluoromethyl Phosphonium Salts [44]... Table Iti. Preparation of Halofluoromethanes front Halofluoromethyl Phosphonium Salts [44]...
Fluonnated ylides have also been prepared in such a way that fluonne is incorporated at the carhon P to the carbamonic carbon Vanous fluoroalkyl iodides were heated with tnphenylphosphine in the absence of solvent to form the necessary phosphonium salts Direct deprotonation with butyUithium or hthium dusopropy-lamide did not lead to yhde formation, rather, deprotonation was accomparued by loss of fluonde ion Flowever deprotonation with hydrated potassium carbonate in thoxane was successful and resulted in fluoroolefin yields of45-S0% [59] (equation 54) P-Fluorinated ylides may also be prepared by the reaction of an isopropyli-denetnphenylphosphine yhde with a perfluoroalkanoyl anhydnde The intermediate acyl phosphonium salt can undergo further reaction with methylene tnphenylphosphorane and phenyUithium to form a new yhde, which can then be used in a Wittig olefination procedure [60] (equation 55) or can react with a nucleophile [6/j such as an acetyhde to form a fluonnated enyne [62] (equation 56)... [Pg.591]

Fluoroolefins may he prepared by the reaction of Wittig reagents and other pho sphorus-containtng y tides with fluorinated carbonyl compounds. (A discussion of the fluorinated Wittig reagents or other fluonnated phosphorus reagents with nonfluorinated carbonyl compounds is on page 581.) Tnphenylphosphoranes, derived from alkyltriphenyl phosphonium salts, react with 1,1,1-trifluoroacetone [3/] or other trifluoromethyl ketones [32, iJ] (equation 26) (Table 10). [Pg.628]

Phosphonium salts containing a benzyl group may be converted into ylides by the use of only moderately strong bases such as sodium ethoxide. The preparation of benzyli-dene derivatives of aldehydes and ketones is therefore easily done. The procedure below is for the preparation of a substituted butadiene, which in turn is ideally suited for use in the Diels-Alder reaction (see Chapter 8, Section I). [Pg.104]

The quaternary phosphonium salt is prepared by refluxing for 12 hours or longer a mixture of 4.5 g of benzyl chloride and 13 g of triphenylphosphine in 70 ml of xylene. On cooling to approx. 60°, colorless crystals of benzyltriphenylphosphonium chloride can be filtered off, washed with xylene (approx. 50 ml) and dried. The yield is virtually quantitative, mp 310-311°. [Pg.104]

Following the procedure given above, cyclopropylidenecyclopentane is prepared in 85% yield from 34.4 g (0.09 mole) of the phosphonium salt, 3.83 g (0.097 mole) of sodium amide (used instead of phenyllithium), and 8.4 g (0.1 mole) of cyclopentanone in ether as solvent (350 ml). The product has bp 69-70770 mm. [Pg.110]

Preparation of phosphonium salts as ionic liquids [PiBu3Et][tosylate] Gytec Technology Gorp., USA 2001 24... [Pg.31]

Since electron-donating substituents at the phosphorus atom favor addition reactions over olefination reactions, addition of 9 to aldehydes leads to the exclusive formation of the silyl-pro-tected allylic alcohols 10. No reaction products arising from Wittig alkenylation could be detected. The ylides (R,S)-9 and (S.S)-9 and their enantiomers were prepared from the corresponding optically pure l-[2-(diphenylphosphino)ferrocenyl]-A,A -dimethylethanamine diastereomers 7 via the phosphonium salts 8. [Pg.144]

The present preparation illustrates a general and convenient method for the fnms-iodopropenylation of an alkyl halide.4 The iodopropenyl-ated material is not usually stable but is a useful synthetic intermediate. For example, it forms a stable crystalline triphenylphosphonium salt for use in the Wittig reaction, and under Kornblum reaction conditions (DMS0-NaHC03, 130°, 3 minutes) it gives an (E)-a,/9-unsaturated aldehyde.4 In addition to the phosphonium salt described in Note 15, the following have been prepared (4-p-methoxyphenyl-2-butenyl)-triphenylphosphonium iodide [Phosphonium, [4-(4-methoxyphenyl)-2-butenyl]triphenyl-, iodide], m.p. 123-127° (2-octenyl)triphenyl-phosphonium iodide [Phosphonium, 2-octenyltriphenyl-, iodide], m.p. 98° and (2-octadecenyl)triphenylphosphonium iodide [Phosphonium, 2-octadecenyltriphenyl-, iodide], m.p. 50°. [Pg.81]

In the Wittig reaction an aldehyde or ketone is treated with a phosphorus ylid (also called a phosphorane) to give an alkene. Phosphorus ylids are usually prepared by treatment of a phosphonium salt with a base, and phosphonium salts are usually prepared from the phosphine and an alkyl halide (10-44) ... [Pg.1231]

The overall sequence of three steps may be called the Wittig reaction, or only the final step. Phosphonium salts are also prepared by addition of phosphines to Michael alkenes (hke 15-8) and in other ways. The phosphonium salts are most often converted to the ylids by treatment with a strong base such as butyllithium, sodium amide, sodium hydride, or a sodium alkoxide, though weaker bases can be used if... [Pg.1231]


See other pages where Phosphonium Salts 1 Preparation is mentioned: [Pg.44]    [Pg.453]    [Pg.105]    [Pg.273]    [Pg.453]    [Pg.36]    [Pg.88]    [Pg.44]    [Pg.453]    [Pg.105]    [Pg.273]    [Pg.453]    [Pg.36]    [Pg.88]    [Pg.309]    [Pg.337]    [Pg.319]    [Pg.98]    [Pg.53]    [Pg.83]    [Pg.204]    [Pg.211]    [Pg.592]    [Pg.340]    [Pg.377]    [Pg.721]    [Pg.297]    [Pg.153]    [Pg.345]   
See also in sourсe #XX -- [ Pg.112 ]

See also in sourсe #XX -- [ Pg.112 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Alkyl halides preparing phosphonium salts from

PREPARATION OF PHOSPHONIUM SALTS

Phosphonium salts

Phosphonium salts preparing ylides from

Preparation, properties and reactions of phosphonium salts

Salts preparation

© 2024 chempedia.info