Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphine photolysis

Neutral (cyclobutadiene)iron complexes undergo thermal and photochemical ligand substitution with phosphines, with alkenes such as dimethyl fumarate and dimethyl maleate, and with the nitrosonium cation. Cationic nitrosyl complexes (e.g. 210) undergo ligand substitution by treatment with phosphines. Photolysis of (tetraphenylcyclobutadiene)Fe(CO)3 in THF at -40 °C is reported to give the novel bimetallic complex (214), which reacts with carbon monoxide (140 atm, 80 °C) to regenerate the starting material.An X-ray diffraction analysis of (214 R = Ph, R = t-Bu) reveals a very short Fe-Fe distance of 2.117 A. [Pg.2054]

In contrast to the well-defined photochemical behavior of 1-azirines the thermal reactions of these compounds have been studied less thoroughly (68TL3499). The products formed on photolysis of azirines can best be rationalized in terms of an equilibration of the heterocyclic ring with a transient vinylnitrene. Thus, products formed from the thermolysis of azirines are generally consistent with C—N cleavage. For example, the vinylnitrene generated from the thermolysis of azirine (149) can be trapped with phosphines (72CCS6S). [Pg.65]

The phosphine complex Ru(dmpe)2 has been studied in matrices [62], Ru(diphos)2 (diphos = depe, dppe, (QFs P F P Fs ) has similarly been formed by photolysis of Ru(diphos)2H2 in low-temperature matrices. They probably have square planar structures and undergo oxidative addition with cobalt, C2H4 and hydrogen [63]. [Pg.20]

The coordinated silylenes in both the iron and the chromium compounds can be photolytically activated Photolysis of the complexes in the presence of triphenylphosphine gives the trans-silylene-phosphine complex, which in a second step is transformed into the trnns-bisphosphine compound by excess phosphine. If the silylenes are not trapped, polysilanes are isolated in almost quantitative... [Pg.7]

The formation of diphenylphosphino radicals on photolysis of triphenyl-phosphine, diphenylphosphine, and tetraphenylbiphosphine has been verified. In the case of the reactions of the phosphines, the radicals were trapped with t-nitrosobutane and the resultant nitroxyl radical [Ph2PN(0)Bu ] was identified by e.s.r. The nitroxyl radical has a small P splitting constant, demonstrating that there is no extensive delocalization onto the phosphorus atom. The e.s.r. spectrum of diphenylphosphino radicals, generated by photolysis of tetraphenylbiphosphine in benzene at 77 K, has been observed. When methanolic solutions of the biphosphine or triphenylphosphine are flash-photolysed, a transient species having Amax = 330 nm and which decays by first-order kinetics (A 4 x 10 s )... [Pg.230]

In contrast to the situation on flash pyrolysis, methyleneoxophosphoranes generated by thermolysis or photolysis in the presence of protic nucleophiles can be directly trapped to form corresponding derivatives of phosphinic acid (17- 19) however, the possibility of competing insertion of carbenes into the H/X bond of the additives is always present, giving phosphine oxides with X in the a-position (16- 18). Reaction branching at the carbene 16 was first observed on photolysis of 7 in water 13) and prompted detailed investigations on the phosphorylcarbene/ methyleneoxophosphorane rearrangement. [Pg.78]

Photolysis of the first known cyclic a-diazo-p-oxophosphine oxide 49 is unsuccessful with regard to phosphene formation. There is no evidence for a P/C-phenyl shift, which should lead to 51, nor for a P/C-alkyl shift, which would afford 52 via ring contraction, since none of the expected phosphinic esters could be isolated in methanolM). [Pg.86]

The photolysis of 7-phosphanorbomenes (like 100) was suggested to provide phos-phinidenes (like 101) that reacted with an alcohol to give the corresponding //-phosphinate (e.g. 102) (Scheme 26) [70-72],... [Pg.169]

To our knowledge, the first published report of a photocatal-ytic reaction at elevated pressure was W. Strohmeyer1s hydrogenation of 1,3-cyclohexadiene under hydrogen at 10 atm /22/. On photolysis, the iridium complex 8 formed a very active catalyst, probably by dissociation of a phosphine ligand (Equation 17). At 70 C, with hydrogen at 10 atm, and a catalyst/substrate ratio of 1/100,000, the activity was 196 per minute and the turnover number was 96,000 mol of product/mol catalyst. [Pg.151]

By using hydrogen at high pressure, M.A. Green et al. were able to show that the first step in the photolysis of 0sH,L3 (L PMe Ph) is the reductive elimination of H. The 16-electron intermediate can react with excess phosphine, or can dimerize, or can exchange hydrogen with the benzene solvent /46/. [Pg.156]

The kinetics of the thermally induced homogeneous decomposition of phosphine (PH3) have not yet been studied. The species PH2, PH and P2 are formed on flash photolysis of PH3 and could be identified by their absorption spectra63. There are proposals as to the mechanism of the consecutive process after the photochemical primary step, but nothing is known about the kinetic parameters of these reactions. With arsine and antimony hydride only the heterogeneous decomposition has been studied64,65. [Pg.26]

Photolysis of the phosphine (166) gives the benzophosphole (167) in good yield.154 The dilithium aldimine (168) reacts with phenyldichlorophosphine to form the benzophosphazole (169).155... [Pg.28]

The flash photolysis of phosphine, according to spectroscopic results, causes the formation of two phosphorus- and two hydrogen-containing radicals, corresponding to the dissociation of phosphine as shown in Eqs. (6) and (7) >. [Pg.11]

Mixtures of phosphine and oxygen, both above and below the explosion limits, subjected to flash photolysis show, in the spectra, the presence of PH-, OH- and PO-radicals as well as the PH2-radical Eiuiing the reaction of atomic oxygen with phosphine visible luminescence up to 3600 A and UV emission were observed, which were attributed to the partial processes ... [Pg.22]


See other pages where Phosphine photolysis is mentioned: [Pg.4496]    [Pg.4495]    [Pg.4496]    [Pg.4495]    [Pg.208]    [Pg.64]    [Pg.84]    [Pg.109]    [Pg.149]    [Pg.169]    [Pg.65]    [Pg.236]    [Pg.1]    [Pg.90]    [Pg.99]    [Pg.85]    [Pg.371]    [Pg.79]    [Pg.599]    [Pg.85]    [Pg.144]    [Pg.152]    [Pg.539]    [Pg.219]    [Pg.906]    [Pg.96]    [Pg.34]    [Pg.123]    [Pg.790]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Phosphine oxides photolysis

Phosphine, flash photolysis

© 2024 chempedia.info