Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphine ligands palladium complexes

Although a 14-electron Pd(0)L2 complex is commonly referred to as the reactive species in the oxidative addition of monodentate phosphine-ligated palladium complexes, both a 12-electron species with sterically bulky rerr-butyl phosphine ligands and an anionic 16-electron complex, Pd(0)(PPh3)2(X) (X = halide or acetate), have been described [19, 20, 39,40]. [Pg.135]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

Figure 3.80 Phosphine ligands forming the 5-coordinate palladium and platinum complexes. Figure 3.80 Phosphine ligands forming the 5-coordinate palladium and platinum complexes.
Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

Ph3P)4Pd and certain Pd(II) complexes in the presence of an excess of a tertiary phosphine also function as active catalysts (128). This indicates that palladium species may have potential provided they are protected from destructive reduction by the choice of suitable ligands. A complex species [(Ph3P)2Pd]jf gradually forms in the PhjP—Pd metal mixture ( 28). [Pg.309]

A series of new palladium complexes 26 bearing a phosphine-functionalised NHC ligand has been shown to be more efficient than typical catalytic systems (i.e. Pd(OAc), PPhj) for the reaction depicted in Scheme 7.10 [55], In fact, these conditions afforded the 9-benzylidene-97f-fluorene in higher yields when iodobenzene was used, whereas the reaction of the less reactive phenyl bromide with diphenylacetylene was achieved for the first time affording the desired product in moderate to good yields. [Pg.201]

Fagnou and co-workers reported on the use of a palladium source in the presence of different phosphine ligands for the intramolecular direct arylation reaction of arenes with bromides [56]. Later, they discovered that new conditions employing palladium complex 27 promoted the direct arylation of a broad range of aryl chlorides to form six- and five-membered ring biaryls including different functionalities as ether, amine, amide and alkyl (Scheme 7.11) [57]. [Pg.201]

The hydroboration of enynes yields either of 1,4-addition and 1,2-addition products, the ratio of which dramatically changes with the phosphine ligand as well as the molar ratio of the ligand to the palladium (Scheme 1-8) [46-51]. ( )-l,3-Dienyl-boronate (24) is selectively obtained in the presence of a chelating bisphosphine such as dppf and dppe. On the other hand, a combination of Pdjldba), with Ph2PC6p5 (1-2 equiv. per palladium) yields allenylboronate (23) as the major product. Thus, a double coordination of two C-C unsaturated bonds of enyne to a coordinate unsaturated catalyst affords 1,4-addition product On the other hand, a monocoordination of an acetylenic triple bond to a rhodium(I)/bisphosphine complex leads to 24. Thus, asymmetric hydroboration of l-buten-3-yne giving (R)-allenyl-boronate with 61% ee is carried out by using a chiral monophosphine (S)-(-)-MeO-MOP (MeO-MOP=2-diphenylphosphino-2 -methoxy-l,l -binaphthyl) [52]. [Pg.10]

Recently, Y. Yamamoto reported a palladium-catalyzed hydroalkoxylation of methylene cyclopropanes (Scheme 6-25) [105]. Curiously, the catalysis proceeds under very specific conditions, i.e. only a 1 2 mixture of [Pd(PPh3)4] and P(o-tolyl)3 leads to an active system. Other combinations using Pd(0 or II) precursors with P(o-tolyl)3 or l,3-bis(diphenylphosphino)propane, the use of [Pd(PPh3)4] without P(o-tolyl)3 or with other phosphine ligands were all inefficient for the hydroalkoxylation. The authors assumed a mechanism in which oxidative addition of the alcohol to a Pd(0) center yields a hydrido(alkoxo) complex which is subsequently involved in hydropal-ladation of methylenecyclopropane. [Pg.206]

Kurosawa et al. have reported that the relative stability of the ti-allyl palladium thi-olate 39 and the allyl sulfide/Pd(0) was highly ligand dependent. In the presence of PPhs or P(OMe)3 the stability was in favor of reductive elimination (Eq. 7.28), while in the presence of olefin or in the absence of any additional ligand the stability was in favor of oxidative addition (Eq. 7.29) [38]. This can explain the reactivity of the n-allyl palladium thiolate 33 and 38 proposed in Eq. (7.24) and path (c) of Scheme 7-10. The complex 33 should react with PhSH, but C-S bond-forming reductive elimination has to be suppressed in order to obtain the desired product 32. On the other hand, the complex 38 requires the phosphine ligand to promote the C-S bond-forming reductive elimination. [Pg.228]

A palladium catalyst with a less electron-rich ligand, 2,2-dipyridyl-methylamine-based palladium complexes (4.2), is effective for coupling of aryl iodides or bromides with terminal alkynes in the presence of pyrrolidine and tetrabutylammonium acetate (TBAB) at 100°C in water.37 However, the reactions were shown to be faster in NMP solvent than in water under the reaction conditions. Palladium-phosphinous acid (POPd) was also reported as an effective catalyst for the Sonogashira cross-coupling reaction of aryl alkynes with aryl iodides, bromides, or chlorides in water (Eq. 4.18).38... [Pg.109]

Phosphine ligands based on the ferrocene backbone are very efficient in many palladium-catalyzed reactions, e.g., cross-coupling reactions,248 Heck reaction,249 amination reaction,250 and enantioselective synthesis.251 A particularly interesting example of an unusual coordination mode of the l,l -bis(diphenylphosphino)ferrocene (dppf) ligand has been reported. Dicationic palladium(II) complexes, such as [(dppf)Pd(PPh3)]2+[BF4 ]2, were shown to contain a palladium-iron bond.252,253 Palladium-iron bonds occur also in monocationic methyl and acylpalladium(II) complexes.254 A palladium-iron interaction is favored by bulky alkyl substituents on phosphorus and a lower electron density at palladium. [Pg.575]

Although palladium or platinum on charcoal are widely used, there is a preference for homogeneous reactions on both the laboratory and the industrial scale. Complexes of ruthenium (II) and rhodium (I), particularly with phosphine ligands, do have some importance in special applications [4], but... [Pg.253]


See other pages where Phosphine ligands palladium complexes is mentioned: [Pg.202]    [Pg.202]    [Pg.202]    [Pg.202]    [Pg.168]    [Pg.138]    [Pg.427]    [Pg.194]    [Pg.356]    [Pg.216]    [Pg.182]    [Pg.12]    [Pg.567]    [Pg.485]    [Pg.182]    [Pg.198]    [Pg.7]    [Pg.76]    [Pg.78]    [Pg.203]    [Pg.204]    [Pg.288]    [Pg.7]    [Pg.26]    [Pg.716]    [Pg.1052]    [Pg.104]    [Pg.117]    [Pg.589]    [Pg.589]    [Pg.606]    [Pg.177]    [Pg.188]    [Pg.74]    [Pg.202]    [Pg.182]    [Pg.182]    [Pg.184]    [Pg.190]   


SEARCH



Palladium complexes ligands

Palladium ligands

Palladium phosphine

Phosphine ligand

Phosphine palladium complex

© 2024 chempedia.info