Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphates boronates

The tertiary metal phosphates are of the general formula MPO where M is B, Al, Ga, Fe, Mn, etc. The metal—oxygen bonds of these materials have considerable covalent character. The anhydrous salts are continuous three-dimensional networks analogous to the various polymorphic forms of siHca. Of limited commercial interest are the alurninum, boron, and iron phosphates. Boron phosphate [13308-51 -5] BPO, is produced by heating the reaction product of boric acid and phosphoric acid or by a dding H BO to H PO at room temperature, foUowed by crystallization from a solution containing >48% P205- Boron phosphate has limited use as a catalyst support, in ceramics, and in refractories. [Pg.335]

Block 1 - important inorganic parameters with relevance to the enviromnent, e.g. nitrate, nitrite, ammonium, phosphate, boron, alkali metal and alkaline earth metal (e.g. potassium, calcium, magnesium). [Pg.99]

PORONCOMPOUNDS - BORON HYDRIDES, HETEROBORANES AND THEIRTffiTALLADERIVATIVES] (Vol 4) Triethylammomum phosphates... [Pg.1015]

Thousands of compounds of the actinide elements have been prepared, and the properties of some of the important binary compounds are summarized in Table 8 (13,17,18,22). The binary compounds with carbon, boron, nitrogen, siUcon, and sulfur are not included these are of interest, however, because of their stabiUty at high temperatures. A large number of ternary compounds, including numerous oxyhaUdes, and more compHcated compounds have been synthesized and characterized. These include many intermediate (nonstoichiometric) oxides, and besides the nitrates, sulfates, peroxides, and carbonates, compounds such as phosphates, arsenates, cyanides, cyanates, thiocyanates, selenocyanates, sulfites, selenates, selenites, teUurates, tellurites, selenides, and teUurides. [Pg.221]

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

A number of boron chemicals are prepared directly from boric acid. These include synthetic inorganic borate salts, boron phosphate, fluoborates, boron ttihaHdes, borate esters, boron carbide, and metal aHoys such as ferroboron [11108-67-1]. [Pg.194]

Boron phosphate, BPO, is a white, infusible soHd that vapori2es slowly above 1450°C, without apparent decomposition. It is normally prepared by dehydrating mixtures of boric acid and phosphoric acid at temperatures up to 1200°C. [Pg.209]

The stmcture of boron phosphate prepared under normal atmospheric conditions consists of tetragonal bipyrimids analogous to the high cristobahte form of siUca. Both the boron and phosphoms are tetrahedraHy coordinated by oxygen. Similar siUcalike stmctures ate found for BAsO and TaBO (156). A quart2like form of boron phosphate can be prepared by heating the common form to 500°C at 5.07 GPa (50,000 atm) (157). [Pg.209]

The tri-, tetra-, penta-, and hexahydrates of boron phosphate have been reported. AH of these decompose rapidly in water to give solutions of the parent acids. Anhydrous boron phosphate hydroly2es in a similar fashion, though the reaction proceeds quite slowly for material that has been ignited at high temperatures. [Pg.209]

The principal appHcation of boron phosphate has been as a heterogeneous acid catalyst (158). [Pg.209]

Although boron phosphate is derived from two of the three most common glass-forming oxides, it exhibits Htde tendency to form a glass itself. Boron phosphate is a primary phase over a considerable portion of the B2O2—Si02—P20 system (159). [Pg.209]

Strong acids are able to donate protons to a reactant and to take them back. Into this class fall the common acids, aluminum hahdes, and boron trifluoride. Also acid in nature are silica, alumina, alumi-nosihcates, metal sulfates and phosphates, and sulfonated ion exchange resins. They can transfer protons to hydrocarbons acting as weak bases. Zeolites are dehydrated aluminosilicates with small pores of narrow size distribution, to which is due their highly selective action since only molecules small enough to enter the pores can reacl . [Pg.2094]

In a typical process adiponitrile is formed by the interaction of adipic acid and gaseous ammonia in the presence of a boron phosphate catalyst at 305-350°C. The adiponitrile is purified and then subjected to continuous hydrogenation at 130°C and 4000 Ibf/in (28 MPa) pressure in the presence of excess ammonia and a cobalt catalyst. By-products such as hexamethyleneimine are formed but the quantity produced is minimized by the use of excess ammonia. Pure hexamethylenediamine (boiling point 90-92°C at 14mmHg pressure, melting point 39°C) is obtained by distillation, Hexamethylenediamine is also prepared commercially from butadience. The butadiene feedstock is of relatively low cost but it does use substantial quantities of hydrogen cyanide. The process developed by Du Pont may be given schematically as ... [Pg.481]

The Fermentation Process The process by which this antifungal substance is produced is an aerobic fermentation of an aquaous nutrient medium inoculated with a pimaricin-producing strain of Streptomycesgihrosporeus. The nutrient medium contains an assimilable source of carbon such as starch, molasses, or glycerol, an assimilable source of nitrogen such as corn steep liquor and Inorganic cations such as potassium, sodium or calcium, and anions such as sulfate, phosphate or chloride. Trace elements such as boron, molybdenum or copper are supplied as needed in the form of impurities by the other constituents of the medium. [Pg.1061]

Discussion. This method is based upon the precipitation of lead chlorofluoride, in which the chlorine is determined by Volhard s method, and from this result the fluorine content can be calculated. The advantages of the method are, the precipitate is granular, settles readily, and is easily filtered the factor for conversion to fluorine is low the procedure is carried out at pH 3.6-5.6, so that substances which might be co-predpitated, such as phosphates, sulphates, chromates, and carbonates, do not interfere. Aluminium must be entirely absent, since even very small quantities cause low results a similar effect is produced by boron ( >0.05 g), ammonium (>0.5 g), and sodium or potassium ( > 10g) in the presence of about 0.1 g of fluoride. Iron must be removed, but zinc is without effect. Silica does not vitiate the method, but causes difficulties in filtration. [Pg.356]

Compound (1) phosphorylates phosphate monoesters and alcohols, although with the latter a considerable excess of alcohol is necessary to obtain satisfactory yields. In the absence of mercuric ions the milder phosphorylating species (3) can be isolated which converts monoalkyl phosphates to pyrophosphate diesters in good yield but does not react appreciably with alcohols unless catalytic amounts of boron trifluoride are added. Amine salts of (3) are converted to phosphoramidates on heating. In the presence of silver ions, O-esters of thiophosphoric acid behave as phosphorylating agents and a very mild and convenient procedure suitable for preparing labile unsymmetrical pyrophosphate diesters, such as the... [Pg.95]

Zenaishvili, N. V., Bakradze, E. G. Chelidze, D. V. (1984). Serpentinite-phosphate mortar containing iron and boron. Chemical Abstracts, 101, 156519r. [Pg.282]

Flame resistance A1203, antimony oxides, boron compounds, halogen compounds, phosphate esters, metal hydrates, magnesium compounds, tin compounds, molybdenum compounds, silicones Al, B, Br, Cl, Mo, P, Sb, Si, Sn, Zn... [Pg.587]

In this context, it is interesting to note that the first synthesis of 2, 3 -0,0-cyclic phosphorothioate 22a was reported by Eckstein in 1968 [25], He also isolated pure Rp diastereomer by fractional crystallization of the triethylammonium salts [26] and used it as reference to determine the absolute configurations of the other phosphorothioate analogues [27], 2, 3 -0,0-Cyclic H-phosphonate 20a was used as a key substrate for the synthesis of uridine 2, 3 -0,0-cyclic boranophosphate 27. Silylation of H-phosphate 20a gave the phosphite triester 25 (two diastereomers). Its boronation, with simultaneous removal of the trimethylsilyl group, was achieved by its reaction with borane-A.A-diisopropylethylamine complex (DIPEA-BH3). [Pg.108]

It is necessary to remember that as well as organic cross-links, elements such as boron, silicon and calcium cross-link all the major external proteins and saccharides even in the walls of prokaryotes. Many of the cross-linking binding sites are of oxidised side chains of biopolymers. As described in Section 8.10, certain of these elements form mineral deposits but now these minerals are frequently found inside the multi-cellular organisms. Here, we see a great difference between the chemo-types of plants and animals. The acidity of the extracellular fluids of plants differs from the neutral fluid of animals. It is not possible to precipitate calcium carbonates (shells) or phosphates (bones) in plants due to the weak acid character of these anions (see Table 8.12). Plants therefore precipitate silica and calcium... [Pg.353]


See other pages where Phosphates boronates is mentioned: [Pg.62]    [Pg.69]    [Pg.122]    [Pg.314]    [Pg.168]    [Pg.16]    [Pg.62]    [Pg.69]    [Pg.122]    [Pg.314]    [Pg.168]    [Pg.16]    [Pg.78]    [Pg.124]    [Pg.650]    [Pg.181]    [Pg.385]    [Pg.362]    [Pg.188]    [Pg.190]    [Pg.191]    [Pg.209]    [Pg.405]    [Pg.113]    [Pg.567]    [Pg.459]    [Pg.330]    [Pg.62]    [Pg.927]    [Pg.64]    [Pg.927]    [Pg.96]    [Pg.32]    [Pg.248]    [Pg.31]    [Pg.27]   
See also in sourсe #XX -- [ Pg.35 , Pg.69 ]




SEARCH



Boron phosphate

© 2024 chempedia.info