Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenylboronic acid arylation with

Methods F and G are ligandless palladium-catalysed and therefore dramatically sensitive to the presence of an oxygen [28]. Beside aryl bromides, the Pd(OAc)2 or Pd(SEt2)Cl2-catalysed SM reactions in A,iV-dimethylformamide were effectively conducted with aryl chlorides [29]. When appropriate precautions were taken, the SM cross-coupling reaction of phenylboronic acid (260) with 4-nitro-bromobenzene (168) or 4-nitro-iodobenzene (225) furnished 4-nitrobiphenyI (224) with a quantitative yield within 0.75 or 2.5 h. Scheme 16. [Pg.156]

For the synthesis of a suitable arylboron compound, usually an aryl halide is converted to an aryllithium or aryl Grignard derivative, and then reacted with a trialkoxyborane to yield an arylboronic ester, e.g. the phenylboronic acid diisopropyl ester 13 from bromobenzene 11 ... [Pg.273]

The Suzuki reaction has been successfully used to introduce new C - C bonds into 2-pyridones [75,83,84]. The use of microwave irradiation in transition-metal-catalyzed transformations is reported to decrease reaction times [52]. Still, there is, to our knowledge, only one example where a microwave-assisted Suzuki reaction has been performed on a quinolin-2(lH)-one or any other 2-pyridone containing heterocycle. Glasnov et al. described a Suzuki reaction of 4-chloro-quinolin-2(lff)-one with phenylboronic acid in presence of a palladium-catalyst under microwave irradiation (Scheme 13) [53]. After screening different conditions to improve the conversion and isolated yield of the desired aryl substituted quinolin-2( lff)-one 47, they found that a combination of palladium acetate and triphenylphosphine as catalyst (0.5 mol %), a 3 1 mixture of 1,2-dimethoxyethane (DME) and water as solvent, triethyl-amine as base, and irradiation for 30 min at 150 °C gave the best result. Crucial for the reaction was the temperature and the amount of water in the... [Pg.21]

The Suzuki-Miyaura synthesis is one of the most commonly used methods for the formation of carbon-to-carbon bonds [7]. As a palladium catalyst typically tetrakis(triphenylphosphine)palladium(0) has been used, giving yields of44—78%. Recently, Suzuki coupling between aryl halides and phenylboronic acid with efficient catalysis by palladacycles was reported to give yields of 83%. [Pg.479]

The facile arylation of aldehydes with arylboronic acid has prompted the exploration of asymmetric versions of this reaction. However, this field has been scarcely explored and only few examples have been reported in the literature, with moderate results. The first diastereoselective example was described by Ftirstner and coworkers. By reacting the Gamer aldehyde 15 with phenylboronic acid under their set of experimental conditions (i.e. RhClj-SH O, IPr HCl) (Scheme 7.4) [21], the secondary alcohol was obtained in higher selectivity than that observed in the addition of phenylmagnesium bromide reported by Joullie (de = 94% versus 66%), with the anti isomer as the major compound [29]. [Pg.196]

Xia and co-workers synthesised a number of Pd-NHC complexes (33, 34, 36) for carbonylative Suzuki reactions (Fig. 9.6) [41], Various aryl iodides were carbonylatively coupled (P = 1 atm) with either phenylboronic acid or sodium tetraphenylborate. All the complexes were highly active, but 33 provided the best results with >76% selectivity for ketone in all the reactions. Xia followed this work with the double carbonylation of various aryl iodides with several secondary amines using the catalysts [CuX(Mes)] (37-X) and [Cu(IPr)X] (38-X) (X = I, Br, Cl) (3 MPa, 100°C, 10 h) (Scheme 9.7) [42],... [Pg.227]

Suzuki coupling reactions with aryl halides. Two as-prepared BaCei cPd c03. ( materials (x = 0.05 and 0.10) were successfully utihzed in several Suzuki coupling reactions. Both aryl iodides and aryl bromides react smoothly with 4-phenylboronic acid, eq 1, to yield the corresponding biatyls in high yields (> 95%). For both 4-bromoanisole and 4-iodoanisole, the biatyl yields reached nearly 100% in 3 min with BaCeo 95Pdoo503 5 as the catalyst, corresponding to an effective TON of ca. 2,000 and an effective TOF of nearly 50,000 h. Resnlts are smmnarized in Table 27.1. [Pg.235]

By utilizing a solid support-based tetradentate A-heterocyclic carbene-palladium catalyst, cross couplings of aryl bromides with phenylboronic acid were achieved in neat water under air.121 A high ratio of substrate to catalyst was also realized. [Pg.190]

Ternary Pd-catalyzed coupling reactions of bicyclic olefins (most often norbor-nadiene is used) with aryl and vinyl halides and various nucleophiles have been investigated intensively over the past few years [44]. A new approach in this field is to combine Heck and Suzuki reactions using a mixture of phenyliodide, phenyl-boronic acid and the norbornadiene dicarboxylate. Optimizing the conditions led to 84% of the desired biphenylnorbornene dicarboxylate [45]. Substituted phenyl-iodides and phenylboronic acids can also be used, though the variation at the norbornadiene moiety is highly limited. [Pg.371]

Recently, Larock and coworkers used a domino Heck/Suzuki process for the synthesis of a multitude of tamoxifen analogues [48] (Scheme 6/1.20). In their approach, these authors used a three-component coupling reaction of readily available aryl iodides, internal alkynes and aryl boronic acids to give the expected tetrasubsti-tuted olefins in good yields. As an example, treatment of a mixture of phenyliodide, the alkyne 6/1-78 and phenylboronic acid with catalytic amounts of PdCl2(PhCN)2 gave 6/1-79 in 90% yield. In this process, substituted aryl iodides and heteroaromatic boronic acids may also be employed. It can be assumed that, after Pd°-cata-lyzed oxidative addition of the aryl iodide, a ds-carbopalladation of the internal alkyne takes place to form a vinylic palladium intermediate. This then reacts with the ate complex of the aryl boronic acid in a transmetalation, followed by a reductive elimination. [Pg.372]

A parallel synthesis of a library of 2-aryl-6-chlorobenzothiazoles 112 involves a regioselective palladium-catalyzed Suzuki coupling reaction of 2,6-dichlorobenzothiazole 111 with arylboronic acids (1.1 equiv) under microwave irradiation <06TL3091>. When excess phenylboronic acid is used, Pd(PPh3)4 still provides 2-phenyl-6-chlorobenzothiazole exclusively, while 2-dicyclohexylphosphinobiphenyl 113 generates 2,6-diphenylbenzothiazole as the major product. [Pg.252]

The group of Ley has reported on the use of palladium-doped perovskites as recyclable and reusable catalysts for Suzuki couplings [151]. Microwave-mediated cross-couplings of phenylboronic acid with aryl halides were achieved within 1 h by utilizing the supported catalyst (0.25 mol% palladium) in aqueous 2-propanol (Scheme 7.127). The addition of water was crucial as attempted transformations in non-aqueous mixtures did not proceed. [Pg.383]

In 1997, Miyaura and co-workers reported the nonasymmetric version of 1,4-addition of aryl- and alkenylboronic acids to a,/ -unsaturated ketones using rhodium-phosphine complex as the catalyst.97 Later, Hayashi and Miyaura realized the asymmetric 1,4-addition with high catalytic activity and enantioselectivity.98 In the presence of ( y)-BINAP, the reaction of 2-cyclohexenone with 2.5 equiv. of phenylboronic acid gave (A)-3-phenylcyclohexanone with 97% ee (BINAP = 2,2 -bis (diphenylphosphino)-l,l -binaphthyl Scheme 29).99... [Pg.384]

This catalytic reaction was believed to proceed analogously to those with phenylboronic acids (Scheme 49) 137 137a Transmetallation of the arylstannane with the cationic rhodium complex generated the rhodium aryl species a and trimethyltin tetrafluoroborate. Conjugate addition generated rhodium enolate b, which subsequently reacted with... [Pg.391]

The pyrrole component can also be employed as the aryl halide in Suzuki coupling with aryl boronic acids. Thus, Chang has effected several such reactions using phenylboronic acid and halopyrroles such as 70 and 71 [60]. [Pg.47]

Martin effected the synthesis of several 3,5-diarylated indoles by a tandem Stille-Suzuki sequence [131]. The latter reaction involves exposure of 3-(3-pyridyl)-5-bromo-l-(4-toluenesulfonyl)indole with arylboronic acids (aryl = 3-thienyl, 2-furyl, phenyl) under typical conditions to give the expected products in 86-98% yield [131], Carrera engaged 6- and 7-bromoindole in Pd-catalyzed couplings with 4-fluoro- and 4-methoxyphenylboronic acids to prepare 6- and 7-(4-fluorophenyl)indole (90% and 74% yield) and 6-(4-methoxyphenyl)indole (73% yield) [29]. Banwell and co-workers employed 7-bromoindole in a Suzuki coupling with 3,4-dioxygenated phenylboronic acids en route to the synthesis of Amaryllidaceae alkaloids [132], Yields of 7-arylated indoles are 93-99%. Moody successfully coupled 4-bromoindole... [Pg.100]

Special mention has to be made of the use of surfactants. Aryl halides are insoluble in water but can be solubilized in the aqueous phase with the aid of detergents. A thorough study [24,25] established that the two-phase reaction of 4-iodoanisole with phenylboronic acid (toluene/ethanol/water 1/1/1 v/v/v), catalyzed by [PdCl2 Ph2P(CH2)4S03K 2], was substantially accelerated by various amphiphiles. Under comparable conditions the use of CTAB led to a 99 % yield of 4-methoxybiphenyl, while 92 % and 88 % yields were observed with SDS and n-Bu4NBr, respectively (for the amphiphiles see Scheme 3.11). Similar effects were observed with Pd-complexes of other water-soluble phosphines (TPPTS and TPPMS), too. [Pg.169]

In terms of A -substitution, Hartwig reported improved conditions for the Pd(0) catalyzed N-arylation of indoles and pyrrole <99JOC5575>. It was found that when commercially available P(<-Bu)3 was employed as ligand and cesium carbonate as base, the reaction between indoles 95 and unhindered aryl bromides 96 or chlorides occurred under milder conditions than the Pd(OAc)2/DPPF system previously reported yielding the A/-arylated products 97. Alternatively, it has been found that pyrrole- and indole-2-carboxylic acid esters can be selectively 7V-arylated with phenylboronic acids in the presence of cupric acetate and either tiiethylamine or pyridine <99T12757>. [Pg.124]


See other pages where Phenylboronic acid arylation with is mentioned: [Pg.294]    [Pg.164]    [Pg.166]    [Pg.164]    [Pg.166]    [Pg.690]    [Pg.73]    [Pg.173]    [Pg.177]    [Pg.277]    [Pg.286]    [Pg.287]    [Pg.197]    [Pg.228]    [Pg.233]    [Pg.239]    [Pg.75]    [Pg.190]    [Pg.351]    [Pg.352]    [Pg.166]    [Pg.179]    [Pg.305]    [Pg.242]    [Pg.294]    [Pg.56]    [Pg.57]    [Pg.877]    [Pg.8]    [Pg.10]    [Pg.10]   


SEARCH



4- phenylboronic

Amino acids arylation with phenylboronic

Aryl acid

Phenylboronate

Suzuki coupling reactions aryl chlorides with phenylboronic acid

© 2024 chempedia.info