Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenylalanine transamination reactions

Fig. 25.8 (a) Normal metabolism, in which phenylalanine is converted by phenylalanine 4-mono-oxygenase to tyrosine, (b) Phenylketonuria, in which there is a transamination reaction between phenylalanine and a-ketoglutaric acid. Phenylalanine 4-mono-oxygenase is absent in about 1 in every 10000 human beings because of a recessive mutant gene. [Pg.483]

These alkaloids can also be derived from non-aminoacid precursors. The N atom is inserted into the molecule at a relatively late stage, for example, in the case of steroidal or terpenoid skeletons. Certainly, the N atom can also be donated by an amino acid source across a transamination reaction, if there is a suitable aldehyde or ketone. Pseudoalkaloids can be acetate and phenylalanine-derived or terpenoid, as well as steroidal alkaloids. Examples of pseudoalkaloids include such compounds as coniine, capsaicin, ephedrine, solanidine, caffeine, theobromine and pinidine (Figure 6). More examples appear in Table 1. [Pg.12]

The precursors of true alkaloids and protoalkaloids are aminoacids (both their precursors and postcursors), while transamination reactions precede pseudoalkaloids (Tables 1 and 10). It is not difficult to see that from all aminoacids only a small part is known as alkaloid precursors (Table 19). Both true and proto alkaloids are synthesized mainly from the aromatic amino acids, phenylalanine, tyrosine (isoquinoline alkaloids) and tryptophan (indole alkaloids). Lysine is the... [Pg.61]

Murakami et al. also found that the transamination reaction between hydrophobic pyridoxals (36 and 37) and a-amino acids, to produce a-keto acids, was extremely slow for neutral pyridoxals even in the presence of Cu(n) ions [24]. Detailed kinetic analysis of the reactions carried out in the vesicular system indicated that the transformation of the Cu(n) -quinonoid chelate into the Cu(n) -ketimine chelate was kinetically unfavorable compared with the competing formation of the Cu(n)-aldimine chelate from the same quinonoid species. This problem was solved to a certain extent by quaternization of the pyridyl nitrogen in pyridoxal, as Murakami et al. successfully accomplished transamination between catalyst 36 and L-phenylalanine to produce phenylpyruvic acid. [Pg.47]

Having successfully accelerated the reversible isomerization between the aldimine and ketimine Schiff bases, Murakami et al. then studied how to obtain turnovers in the full transamination reaction between one amino acid and one keto acid [25]. They found that the bilayer vesicle system constituted with 33, 36, and Cu(n) ions showed some turnovers for the transamination between L-phenylalanine and pyruvic add. However, such turnover behavior was not observed in a vesicular system composed of 32, 36, and Cu(n) ions, and an aqueous system involving N-methylpyridoxal and Cu(n) ions without amphiphiles. Therefore, both the hydrophobic effect and the imidazole catalysis effect were proposed as important for the turnover behavior. [Pg.47]

Phenylketonuria (PKU) is an inborn error of metabolism by which the body is unable to convert surplus phenylalanine (PA) to tyrosine for use in the biosynthesis of, for example, thyroxine, adrenaline and noradrenaline. This results from a deficiency in the liver enzyme phenylalanine 4-mono-oxygenase (phenylalanine hydroxylase). A secondary metabolic pathway comes into play in which there is a transamination reaction between PA and a-keto-glutaric acid to produce phenylpyruvic acid (PPVA), a ketone and glutamic acid. Overall, PKU may be defined as a genetic defect in PA metabolism such that there are elevated levels of both PA and PPVA in blood and excessive excretion of PPVA (Fig. 25.7). [Pg.451]

All of the amino acids except lysine, threonine, proline, and hydroxyproline participate in transamination reactions. Transaminases exist for histidine, serine, phenylalanine, and methionine, but the major pathways of their metabolism do not involve transamination. Transamination of an amino group not at the a-position can also occur. Thus, transfer of 3-amino group of ornithine to a-ketoglutarate converts ornithine to glutamate-y-semialdehyde. [Pg.337]

Because transamination reactions are reversible, it is theoretically possible for all amino acids to be synthesized by transamination. However, experimental evidence indicates that there is no net synthesis of an amino acid if its a-keto acid precursor is not independently synthesized by the organism. For example, alanine, aspartate, and glutamate are nonessential for animals because their a-keto acid precursors (i.e., pyruvate, oxaloacetate, and a-ketoglutarate) are readily available metabolic intermediates. Because the reaction pathways for synthesizing molecules such as phenylpyruvate, a-keto-/Thydroxybutyrate, and imidazolepyruvate do not occur in animal cells, phenylalanine, threonine, and histidine must be provided in the diet. (Reaction pathways that synthesize amino acids from metabolic intermediates, not only by transamination, are referred to as de novo pathways.)... [Pg.461]

Transamination reactions, in the presence of zinc(II) ion, between (/ )-l 5-aminomethyl-I4-hydroxy-5,5-dimethyl-2,8-dilhia[9](2,5)pyridinophane1S, a pyridoxamine analog with planar chirality, and phenylpyruvic acid give (2>)-phenylalanine with 61 % ee in 76% yield17. [Pg.934]

Amino acids are used by the body to form proteins, hormones, and enzymes. Transamination reactions can convert one amino acid into another to meet immediate needs. However, just as there are essential fatty acids, there are also essential amino acids. These amino acids cannot be synthesized in the body and must come from external sources. Humans require phenylalanine, valine, tryptophan, threonine, lysine, leucine, isoleucine, and methionine as essential amino acids. All other amino acids in the body can be synthesized at rates sufficient to meet body needs. If any one of the amino acids necessary to synthesize a particular protein is not available, then the other amino acids that would have gone into the protein are deaminated, and their excess nitrogen is excreted as urea (Ganong, 1963). [Pg.295]

Figure 2. Alternative enzymatic routing for L-phenylalanine biosynthesis. Dehydration followed by transamination defines the phenylpyruvate route, whereas the reverse order of reactions defines the arogenate route. Abbreviations GLU, L-glutamate aKG, 2-ketoglutarate. Figure 2. Alternative enzymatic routing for L-phenylalanine biosynthesis. Dehydration followed by transamination defines the phenylpyruvate route, whereas the reverse order of reactions defines the arogenate route. Abbreviations GLU, L-glutamate aKG, 2-ketoglutarate.
In this transamination, the effect of para substitient groups has been studied using fluorinated phenylpyruvic acids and L-aspartic acid. From these results, the migratory preference is H > F > Cl > Br > CF3. This order has been attributed to the bulkiness of the substituted group [57]. Direct amination of p-substituted succinic acid with phenylalanine ammonialyase (EC 4.3.1.5) has suggested very high substrate specificity that the order of reaction rate is m-F o-F P-p-F >CF3. [Pg.119]

Figure 25-5 shows the principal catabolic pathways, as well as a few biosynthetic reactions, of phenylalanine and tyrosine in animals. Transamination to phenylpyruvate (reaction a) occurs readily, and the product may be oxidatively decarboxylated to phen-ylacetate. The latter may be excreted after conjugation with glycine (as in Knoop s experiments in which phenylacetate was excreted by dogs after conjugation with glycine, Box 10-A). Although it does exist, this degradative pathway for phenylalanine must be of limited importance in humans, for an excess of phenylalanine is toxic unless it can be oxidized to tyrosine (reaction b, Fig. 25-5). Formation of phenylpyruvate may have some function in animals. The enzyme phenylpyruvate tautomerase, which catalyzes interconversion of enol and oxo isomers of its substrate, is also an important immunoregulatory cytokine known as macrophage migration inhibitory factor.863... Figure 25-5 shows the principal catabolic pathways, as well as a few biosynthetic reactions, of phenylalanine and tyrosine in animals. Transamination to phenylpyruvate (reaction a) occurs readily, and the product may be oxidatively decarboxylated to phen-ylacetate. The latter may be excreted after conjugation with glycine (as in Knoop s experiments in which phenylacetate was excreted by dogs after conjugation with glycine, Box 10-A). Although it does exist, this degradative pathway for phenylalanine must be of limited importance in humans, for an excess of phenylalanine is toxic unless it can be oxidized to tyrosine (reaction b, Fig. 25-5). Formation of phenylpyruvate may have some function in animals. The enzyme phenylpyruvate tautomerase, which catalyzes interconversion of enol and oxo isomers of its substrate, is also an important immunoregulatory cytokine known as macrophage migration inhibitory factor.863...
In cases where the natural amino acid side chains of enzymes are insufficient to carry out a desired reaction, the enzyme frequently uses coenzymes. A coenzyme is bound by the enzyme along with the substrate, and the enzyme catalyses the bimolecular reaction between the coenzyme and the substrate (cf. Section 2.6.3). A simple model for a-amino acid synthesis by transamination was developed by substituting /I-cyclodextrin with pyridoxamine. Pyridoxamine is able to carry out the transformation of a-keto acids to a-amino acids even without the presence of the cyclodextrin, but with the cyclodextrin cavity as well, the enzyme model proves to be more selective and transaminates substrates with aryl rings bound strongly by the cyclodextrin much more rapidly than those having little affinity for the cyclodextrin. Thus (p-le/f-butylphenyl) pyruvic acid and phenylpyruvic acid are transaminated respectively 15 000 and 100 times faster then pyruvic acid itself, to give (p-le/f-butylphenyl) alanine and phenylalanine (Scheme 12.5). [Pg.817]

Phenylalanine is first converted to tyrosine by the monooxygenase phenylalanine hydroxylase a reaction involving the coenzyme tetrahydrobiopterin. The tyrosine is then converted first by transamination and then by a dioxygenase reaction to homogentisate, which in turn is further metabolized to fumarate and acetoacetate. [Pg.373]

The pathway bifurcates at chorismate. Let us first follow the prephenate branch (Figure 24,17). A mutase converts chorismate into prephenate, the immediate precursor of the aromatic ring of phenylalanine and tyrosine. This fascinating conversion is a rare example of an electrocyclic reaction in biochemistry, mechanistically similar to the well-known Diels-Alder reaction from organic chemistry. Dehydration and decarboxylation yield phenylpyruvate. Alternatively, prephenate can be oxidatively decarboxylated to p-hydroxyphenylpyruvate. These a-ketoacids are then transaminated to form phenylalanine and tyrosine. [Pg.1001]

L-Phenylalanine,which is derived via the shikimic acid pathway,is an important precursor for aromatic aroma components. This amino acid can be transformed into phe-nylpyruvate by transamination and by subsequent decarboxylation to 2-phenylacetyl-CoA in an analogous reaction as discussed for leucine and valine. 2-Phenylacetyl-CoA is converted into esters of a variety of alcohols or reduced to 2-phenylethanol and transformed into 2-phenyl-ethyl esters. The end products of phenylalanine catabolism are fumaric acid and acetoacetate which are further metabolized by the TCA-cycle. Phenylalanine ammonia lyase converts the amino acid into cinnamic acid, the key intermediate of phenylpropanoid metabolism. By a series of enzymes (cinnamate-4-hydroxylase, p-coumarate 3-hydroxylase, catechol O-methyltransferase and ferulate 5-hydroxylase) cinnamic acid is transformed into p-couma-ric-, caffeic-, ferulic-, 5-hydroxyferulic- and sinapic acids,which act as precursors for flavor components and are important intermediates in the biosynthesis of fla-vonoides, lignins, etc. Reduction of cinnamic acids to aldehydes and alcohols by cinnamoyl-CoA NADPH-oxido-reductase and cinnamoyl-alcohol-dehydrogenase form important flavor compounds such as cinnamic aldehyde, cin-namyl alcohol and esters. Further reduction of cinnamyl alcohols lead to propenyl- and allylphenols such as... [Pg.129]


See other pages where Phenylalanine transamination reactions is mentioned: [Pg.662]    [Pg.92]    [Pg.383]    [Pg.437]    [Pg.42]    [Pg.1023]    [Pg.226]    [Pg.435]    [Pg.435]    [Pg.705]    [Pg.349]    [Pg.712]    [Pg.100]    [Pg.133]    [Pg.317]    [Pg.317]    [Pg.118]    [Pg.96]    [Pg.128]    [Pg.45]    [Pg.118]    [Pg.119]    [Pg.202]    [Pg.5006]    [Pg.252]    [Pg.969]    [Pg.146]    [Pg.182]    [Pg.59]   
See also in sourсe #XX -- [ Pg.5 , Pg.8 , Pg.19 ]




SEARCH



Phenylalanine transamination

Phenylalanine, reactions

Transamination

Transamination reaction

Transaminitis

© 2024 chempedia.info