Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols microorganisms

If a curative approach is not effective, then prevention is, at present, the most reasonable way to deal with the problem. Bearing in mind that, to produce volatile phenols microorganisms needs the substrate to be available and active, the preventive measures may be directed either to minimise the release of free acid or to avoid microbial activity. [Pg.635]

The disinfectant is assessed on its overall performance, namely its ability to kill microorganisms, as judged by subculture recovery or lack of it and not by comparison with phenol, i.e. a disinfectant would pass or fail according to its performance. A use-dilution concentration of a disinfectant must pass the test at three replications. [Pg.238]

Recently nitrosamines have attracted attention because of their marked carcinogenic activity in a wide variety of animal species Q, ). Nitrosamines are likely to be carcinogens in man as well human exposure to these compounds is by ingestion, inhalation, dermal contact and vivo formation from nitrite and amines Nitrite and amines react most rapidly at an acidic pH A variety of factors, however, make nitrosation a potentially important reaction above pH 7 these include the presence of microorganisms, and the possibilities of catalysis by thiocyanate, metals and phenols, and of transnitrosation by other nitroso compounds. [Pg.157]

Hopkins GD, J Munakata, L Semprini, PL McCarty (1993a) Trichloroethylene concentration effects on pilot-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms. Environ Sci Technol 27 2542-2547. [Pg.688]

Hopkins GD, L Semprini, PL McCarty (1993b) Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-oxidizing microorganisms. Appl Environ Microbiol 59 2277-2285. [Pg.688]

Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62). Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62).
Although there is no doubt as to the importance of mycorrhizae in nutrient absorption, reviews on ion uptake have generally not considered it. Hatling et al. (143) made this same point more than 10 years ago. In addition, although phenolic acids inhibit phosphate (144, 145) and potassium (146) uptake, no work has examined the effects of these compounds on nutrient absorption of mycorrhizal associations. Since soil microorganisms produce the bulk of the volatile compounds emitted from soil, which are known to inhibit or stimulate fungal development (147-148), this group of compounds from microbial sources should receive more attention. [Pg.313]

Soil microorganisms produce many compounds that are potentially toxic to higher plants. Examples include members of the following antibiotics (1-6), fatty and phenolic acids (7-12), amino compounds (13-15), and trichothecenes (16, 17). "Soil sickness" and "replant problems" have been reported where certain crops or their residues interfere with establishment of a subsequent crop (18, 19). Toxins resulting from microbial activity sometimes are involved, but it is often unclear whether these are synthesized de novo in microbial metabolism or are breakdown products of the litter itself (20). [Pg.337]

In some cases, microorganisms can transform a contaminant, but they are not able to use this compound as a source of energy or carbon. This biotransformation is often called co-metabolism. In co-metabolism, the transformation of the compound is an incidental reaction catalyzed by enzymes, which are involved in the normal microbial metabolism.33 A well-known example of co-metabolism is the degradation of (TCE) by methanotrophic bacteria, a group of bacteria that use methane as their source of carbon and energy. When metabolizing methane, methanotrophs produce the enzyme methane monooxygenase, which catalyzes the oxidation of TCE and other chlorinated aliphatics under aerobic conditions.34 In addition to methane, toluene and phenol have been used as primary substrates to stimulate the aerobic co-metabolism of chlorinated solvents. [Pg.536]

The contaminants that can be removed by flotation include conventional pollutants such as BOD, COD, total suspended solids (TSS), phosphorus, phenols, oil and grease, as well as toxic pollutants including heavy metals, toxic organics, pathogenic microorganisms, and radioactive radon 22.28,33,54,64,100-102... [Pg.642]

Bugs can be trained by deprivation methods to eat compounds they ordinarily shun. Dow developed a strain of microorganisms that would eat phenol. However, the bugs, when fed more easily digested organics than phenol, often lost then-adaptation and would rather die than eat it again. [Pg.446]

Iron transport agents may belong to the protein or non-protein class. In the former group are found the animal proteins transferrin (25), lactoferrin (26) and conalbumin (27). The low molecular weight iron carrying compounds from microorganisms, the siderochromes, may occur with or without a bound metal ion. Typically, severe repression of biosynthesis of these substances can be expected to set in at an iron concentration of ca. 2 x 10-5 g atoms/liter (28). Most, but not all, of these substances can be described as phenolates or hydroxamates (4). [Pg.150]

Tests were carried out at 25°C and at initial pH 6.9. Cultures in the liquid medium were incubated in 50 mL Falcon tubes, continuously shaked at 220 rpm. Each culture contained a fresh Pseudomonas sp. 0X1 colony in 10 mL of medium. The airlift with 10 g of pumice was sterilized at 121°C for 30 min and then housed in a sterile room. One-day culture was transferred to the reactor and, after a batch phase, liquid medium with phenol as the only carbon source was continuously fed. The reactor volume V was fixed at 0.13 L. Aerobic conditions were established sparging technical air. Under these conditions microorganism started to grow immobilized on the solid s support. When immobilized biomass approached steady state, cyclic operation of the airlift was started by alternating aerobic/anaerobic conditions. [Pg.121]


See other pages where Phenols microorganisms is mentioned: [Pg.448]    [Pg.170]    [Pg.124]    [Pg.1367]    [Pg.135]    [Pg.196]    [Pg.11]    [Pg.22]    [Pg.477]    [Pg.357]    [Pg.366]    [Pg.473]    [Pg.288]    [Pg.83]    [Pg.287]    [Pg.208]    [Pg.570]    [Pg.683]    [Pg.732]    [Pg.45]    [Pg.69]    [Pg.377]    [Pg.33]    [Pg.264]    [Pg.314]    [Pg.316]    [Pg.316]    [Pg.318]    [Pg.945]    [Pg.288]    [Pg.84]    [Pg.156]    [Pg.308]    [Pg.443]    [Pg.30]    [Pg.203]    [Pg.347]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Microorganisms phenol toxicity

© 2024 chempedia.info