Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic aromatic substitution phenols

Other typical electrophilic aromatic substitution reactions—nitration (second entry) sul fonation (fourth entry) and Friedel-Crafts alkylation and acylation (fifth and sixth entnes)—take place readily and are synthetically useful Phenols also undergo elec trophilic substitution reactions that are limited to only the most active aromatic com pounds these include mtrosation (third entry) and coupling with diazomum salts (sev enth entry)... [Pg.1002]

Electrophilic Aromatic Substitution Reactions of Phenols (Continued)... [Pg.1004]

The hydroxyl group of a phenol is a strongly activating substituent and electrophilic aromatic substitution occurs readily m phenol and its deriv atives Typical examples were presented m Table 24 4... [Pg.1017]

In general, the reaction between a phenol and an aldehyde is classified as an electrophilic aromatic substitution, though some researchers have classed it as a nucleophilic substitution (Sn2) on aldehyde [84]. These mechanisms are probably indistinguishable on the basis of kinetics, though the charge-dispersed sp carbon structure of phenate does not fit our normal concept of a good nucleophile. In phenol-formaldehyde resins, the observed hydroxymethylation kinetics are second-order, first-order in phenol and first-order in formaldehyde. [Pg.883]

Phenol and anisole are among the commonly encountered benzene derivatives listed in Table 11.1. Electrophilic aromatic substitution in phenol is discussed in more detail in Section 24.8. [Pg.494]

Pyrrole, furan, and thiophene, on the other hand, have electron-rich aromatic rings and are extremely reactive toward electrophilic aromatic substitution— rnore like phenol and aniline than benzene. Like benzene they have six tt electrons, but these tt electrons are delocalized over five atoms, not six, and ar e not held as strongly as those of benzene. Even when the ring atom is as electronegative as oxygen, substitution takes place readily. [Pg.507]

In most of their- reactions phenols behave as nucleophiles, and the reagents that act on them are electrophiles. Either the hydroxyl oxygen or the aromatic ring may be the site of nucleophilic reactivity in a phenol. Reactions that take place on the ring lead to electrophilic aromatic substitution Table 24.4 summarizes the behavior of phenols in reactions of this type. [Pg.1002]

A hydroxyl group is a very powerful activating substituent, and electrophilic aromatic substitution in phenols occurs far- faster, and under milder conditions, than in benzene. The first entry in Table 24.4, for exfflnple, shows the monobromination of phenol in high yield at low temperature and in the absence of any catalyst. In this case, the reaction was carried out in the nonpolar- solvent 1,2-dichloroethane. In polar- solvents such as water it is difficult to limit the bromination of phenols to monosubstitution. In the following exfflnple, all three positions that are ortho or para to the hydroxyl undergo rapid substitution ... [Pg.1002]

The optimal pH-value for the coupling reaction depends on the reactant. Phenols are predominantly coupled in slightly alkaline solution, in order to first convert an otherwise unreactive phenol into the reactive phenoxide anion. The reaction mechanism can be formulated as electrophilic aromatic substitution taking place at the electron-rich aromatic substrate, with the arenediazonium ion being the electrophile ... [Pg.84]

The Lewis acid complex 4 can cleave into an ion-pair that is held together by the solvent cage, and that consists of an acylium ion and a Lewis acid-bound phenolate. A fr-complex 6 is then formed, which further reacts via electrophilic aromatic substitution in the ortho- or para-position ... [Pg.127]

The mechanism for that step is closely related to that of the Friedel-Crafts acylation. Upon subsequent hydrolysis the o-substituted Lewis acid-coordinated phenolate 7 is converted to the free o-acylphenol 2. By an analogous route, involving an electrophilic aromatic substitution para to the phenolate oxygen, the corresponding para-acylphenol is formed. [Pg.128]

The hydroxyl group is a strongly activating, ortho- and para-directing substituent in electrophilic aromatic substitution reactions (Section 16.4). As a result, phenols are highly reactive substrates for electrophilic halogenation, nitration, sulfonation, and lTiedel-Crafts reactions. [Pg.631]

Diazonium coupling reactions are typical electrophilic aromatic substitutions in which the positively charged diazonium ion is the electrophile that reacts with the electron-rich, ring of a phenol or arylamine. Reaction usually occurs at the para position, although ortho reaction can take place if the para position is blocked. [Pg.944]

Novolacs are prepared with an excess of phenol over formaldehyde under acidic conditions (Fig. 7.6). A methylene glycol is protonated by an acid from the reaction medium, which then releases water to form a hydroxymethylene cation (step 1 in Fig. 7.6). This ion hydroxyalkylates a phenol via electrophilic aromatic substitution. The rate-determining step of the sequence occurs in step 2 where a pair of electrons from the phenol ring attacks the electrophile forming a car-bocation intermediate. The methylol group of the hydroxymethylated phenol is unstable in the presence of acid and loses water readily to form a benzylic carbo-nium ion (step 3). This ion then reacts with another phenol to form a methylene bridge in another electrophilic aromatic substitution. This major process repeats until the formaldehyde is exhausted. [Pg.378]

Resole syntheses entail substitution of formaldehyde (or formaldehyde derivatives) on phenolic ortho and para positions followed by methylol condensation reactions which form dimers and oligomers. Under basic conditions, pheno-late rings are the reactive species for electrophilic aromatic substitution reactions. A simplified mechanism is generally used to depict the formaldehyde substitution on the phenol rings (Fig. 7.21). It should be noted that this mechanism does not account for pH effects, the type of catalyst, or the formation of hemiformals. Mixtures of mono-, di-, and trihydroxymethyl-substituted phenols are produced. [Pg.398]

Mercuration of aromatic compounds can be accomplished with mercuric salts, most often Hg(OAc)2 ° to give ArHgOAc. This is ordinary electrophilic aromatic substitution and takes place by the arenium ion mechanism (p. 675). ° Aromatic compounds can also be converted to arylthallium bis(trifluoroacetates), ArTl(OOCCF3)2, by treatment with thallium(III) trifluoroacetate in trifluoroace-tic acid. ° These arylthallium compounds can be converted to phenols, aryl iodides or fluorides (12-28), aryl cyanides (12-31), aryl nitro compounds, or aryl esters (12-30). The mechanism of thallation appears to be complex, with electrophilic and electron-transfer mechanisms both taking place. [Pg.793]

A second group of aromatic substitution reactions involves aryl diazonium ions. As for electrophilic aromatic substitution, many of the reactions of aromatic diazonium ions date to the nineteenth century. There have continued to be methodological developments for substitution reactions of diazonium intermediates. These reactions provide routes to aryl halides, cyanides, and azides, phenols, and in some cases to alkenyl derivatives. [Pg.1003]


See other pages where Electrophilic aromatic substitution phenols is mentioned: [Pg.1003]    [Pg.1002]    [Pg.1003]    [Pg.1009]    [Pg.1010]    [Pg.948]    [Pg.988]    [Pg.997]    [Pg.997]    [Pg.914]    [Pg.921]    [Pg.921]    [Pg.1003]    [Pg.1002]    [Pg.1003]    [Pg.1009]    [Pg.1010]    [Pg.948]    [Pg.988]    [Pg.997]    [Pg.997]    [Pg.914]    [Pg.921]    [Pg.921]    [Pg.507]    [Pg.1003]    [Pg.426]    [Pg.1003]    [Pg.562]    [Pg.305]    [Pg.378]    [Pg.389]    [Pg.393]    [Pg.203]    [Pg.206]   
See also in sourсe #XX -- [ Pg.49 , Pg.1002 , Pg.1003 ]

See also in sourсe #XX -- [ Pg.494 , Pg.1002 , Pg.1003 ]

See also in sourсe #XX -- [ Pg.494 , Pg.1002 , Pg.1003 ]

See also in sourсe #XX -- [ Pg.478 , Pg.920 , Pg.921 , Pg.922 ]

See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Aromaticity electrophilic aromatic substitution

Aromatics electrophilic substitution

Electrophile Electrophilic aromatic substitution

Electrophilic aromatic phenol

Electrophilic aromatic substitution in phenols

Electrophilic aromatic substitution of phenols

Phenols electrophiles

Phenols electrophilic substitution

Reactions of Phenols Electrophilic Aromatic Substitution

Substituted phenols

Substitution electrophilic aromatic

Substitution electrophilic aromatic substitutions

© 2024 chempedia.info