Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol constant

The mixed aliphatic - aromatic ethers are somewhat more reactive in addition to cleavage by strong hydriodio acid and also by constant b.p. hydrobromio acid in acetic acid solution into phenols and alkyl halides, they may be bromi-nated, nitrated and converted into sulphonamides (Section IV,106,2). [Pg.1067]

The results in table 2.6 show that the rates of reaction of compounds such as phenol and i-napthol are equal to the encounter rate. This observation is noteworthy because it shows that despite their potentially very high reactivity these compounds do not draw into reaction other electrophiles, and the nitronium ion remains solely effective. These particular instances illustrate an important general principle if by increasing the reactivity of the aromatic reactant in a substitution reaction, a plateau in rate constant for the reaction is achieved which can be identified as the rate constant for encounter of the reacting species, and if further structural modifications of the aromatic in the direction of further increasing its potential reactivity ultimately raise the rate constant above this plateau, then the incursion of a new electrophile must be admitted. [Pg.29]

As Table 24 2 shows most phenols have ionization constants similar to that of phenol Itself Substituent effects m general are small... [Pg.998]

Phenols that bear strongly electron withdrawing substituents usually give low yields of carboxylated products their derived phenoxide anions are less basic and the equilibrium constants for their carboxylation are smaller... [Pg.1008]

Two modified sigma constants have been formulated for situations in which the substituent enters into resonance with the reaction center in an electron-demanding transition state (cr+) or for an electron-rich transition state (cr ). cr constants give better correlations in reactions involving phenols, anilines, and pyridines and in nucleophilic substitutions. Values of some modified sigma constants are given in Table 9.4. [Pg.1004]

This experiment describes a characterization analysis in which the degree of association, equilibrium constant, and hydrogen bond energy are measured for benzyl alcohol and phenol in CCI4. [Pg.448]

However, a second mole of alcohol or hemiformal caimot be added at the ordinary pH of such solutions. The equiUbrium constant for hemiformal formation depends on the nature of the R group of the alcohol. Using nmr spectroscopy, a group of alcohols including phenol has been examined in solution with formaldehyde (15,16). The spectra indicated the degree of hemiformal formation in the order of >methanol > benzyl alcohol >phenol. Hemiformal formation provides the mechanism of stabilization methanol is much more effective than phenol in this regard. [Pg.293]

The large value for the hemiformal formation constant of methanol and its low molecular weight explains the high efficiency of methanol in stabilizing formalin solutions. Phenol, on the other hand, is inefficient, and phenol hemiformals are only formed by careful removal of water (17). [Pg.293]

Fig. 1. Possible pathways and rate constants for the methylolation of phenol. Fig. 1. Possible pathways and rate constants for the methylolation of phenol.
Phenolic Dispersions. These systems are predominantly resin-in-water systems in which the resin exists as discrete particles. Particle size ranges from 0.1 to 2 p.m for stable dispersions and up to 100 p.m for dispersions requiring constant agitation. Some of the earliest nonaqueous dispersions were developed for coatings appHcations. These systems consist of an oil-modified phenoHc resin complexed with a metal oxide and a weak solvent. [Pg.298]

The esterification of -butyl alcohol and oleic acid with a phenol—formaldehydesulfonic acid resin (similar to amberHte IR-100) is essentially second order after an initial slow period (52). The velocity constant is directiy proportional to the surface area of the catalyst per unit weight of reactants. [Pg.376]

Phenols hold an important place among organic pollutants, which need to be constantly monitored in waters and in places of militai y activities. Sampling of phenol matrix is conducted with solid face extragents (SPE) with further HPLC or GC analysis. Application of the known SPE usually is ineffective as it doesn t give the possibility to provide full extraction of the analyt (microcontents) in the matrix media. Therefore SPE application needs further progress in their selectivity. [Pg.254]

Because of a small dipole polarisation effect the dielectric constant is somewhat higher than that for PTFE and the polyolefins but lower than those of polar polymers such as the phenolic resins. The dielectric constant is almost... [Pg.569]

Figure 20.7. Effect of frequency on dielectric constant of bis-phenol A polycarbonate... Figure 20.7. Effect of frequency on dielectric constant of bis-phenol A polycarbonate...
As the mouldings are polar, the eleetrieal insulation properties are not outstanding but are adequate for many purposes. At 100°C a typieal woodflour-phenolic moulding has a dielectric constant of 18 and a power faetor of 0.7 at 800 Hz. [Pg.652]

Low temperature dependence of power factor and dielectric constant and with lower absolute values than observed for phenolic resins. [Pg.665]

It is possible to measure equilibrium constants and heats of reaction in the gas phase by using mass spectrometers of special configuration. With proton-transfer reactions, for example, the equilibrium constant can be determined by measuring the ratio of two reactant species competing for protons. Table 4.13 compares of phenol ionizations. [Pg.244]

When the Freeman and Lewis rate constants are applied to an experimental situation and integrated. Fig. 7 results. This figure shows the same fundamental trends seen in the data. There are some differences, however. The Freeman and Lewis measurements, as presented in their Fig. 2, appear to exceed the available phenol by about 39%. This is probably one reason why Zavitsas et al. state that the Freeman rate constants do not fit the data [80], Flowever, the calculations made using their rate constants do maintain the overall material balance. As presented here, they are not as precise as they could be because the calculation interval has been set at 1 h. Flowever, they are as good as the data at this level. [Pg.899]

Zavitsas et al. account for the effects of water in their calculations. Water promotes depolymerization of the paraformaldehyde as well as the hemiformals. Their modifications correct for the apparent reduction in methylolation rate as the extent of reaction proceeds, in that the hemiformals remove formaldehyde reactivity from the reaction mixture. Their rate constants look large because they are written for phenate concentrations rather than phenol and because of the formaldehyde equilibrium adjustments. They note that unsalted phenol is a by-... [Pg.901]

This phenomenon is not possible in p-nitrobenzoic acid hence, p-nitrophenol is a stronger acid with respect to p-nitrobenzoic acid than is expected on the basis of a comparison of substituents in which this resonance delocalization is not an important factor. It was, therefore, recommended that Op = 1.27 be used for p-nitro derivatives of phenols and anilines, rather than the Op = 0.78 given in Table 7-10. These enhanced sigma constants, symbolized a, apply primarily to electron-withdrawing groups in reactions aided by low electron density at the reaction site. [Pg.320]

The decrease in rate was proportional to the concentration of dioxane in the reaction mixture. An equivalent concentration of p-xylene (whose dielectric constant is similar to that of dioxane) produced a smaller decrease, consistent with simple dilution of the reactants. It was, therefore, hypothesized that dioxane forms an H-bonded molecular complex with phenol, the complexed form of the phenol being unreactive. The data could be accounted for with a 2 1 stoichiometry (phe-nokdioxane). This argument was supported by experiments with tetrahydrofuran, which also decreased the rate, but which required a 1 1 stoichiometry to describe the rate data. [Pg.404]


See other pages where Phenol constant is mentioned: [Pg.45]    [Pg.998]    [Pg.311]    [Pg.325]    [Pg.375]    [Pg.62]    [Pg.510]    [Pg.493]    [Pg.295]    [Pg.298]    [Pg.427]    [Pg.79]    [Pg.475]    [Pg.176]    [Pg.180]    [Pg.85]    [Pg.14]    [Pg.112]    [Pg.150]    [Pg.30]    [Pg.570]    [Pg.907]    [Pg.1044]    [Pg.767]    [Pg.45]    [Pg.998]    [Pg.190]    [Pg.328]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



© 2024 chempedia.info