Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase transfer catalysis crown ethers

SoHd-liguid phase-transfer catalysis. Crown ethers have commonly been used as catalysts for reactions between a solid-liquid interface, and quaternary ammonium and phosphonium salts have been used only as catalysts for reactions in two-phase liquid liquid reactions. However, several laboratories have reported that the latter catalysts are also satisfactory for two-phase solid liquid reactions. Thus dichlorocarbene can be generated from chloroform and solid sodium hydroxide under catalysis from benzyltriethylammonium chloride in yields comparable to those of the classical Makosza method. Another example of this type of catalysis is the oxidation of terminal and internal alkynes by solid potassium permanganate in CH2CI2 with Adogen 464 as catalyst. Aliquat 336 has been found to be as satisfactory as a crown ether for certain displacement reactions with NaOAc, KSCN, KNOa, and KF in CH3CN or CHaCla. ... [Pg.200]

Both phase transfer and crown ether catalysis have been used to promote a-elimination reactions of chloroform and other haloalkanes.153 The carbene can be trapped by alkenes to form dichlorocyclopropanes. [Pg.914]

Alkaline hydrolysis rates of a series of thiophenyl 4-X-benzoates (47 X = H, Me, N02) was significantly enhanced in the presence of cyclodextrins (CDs), and this was attributed to strong binding of the benzoyl moiety within the CD cavity and covalent catalysis by secondary hydroxy groups of the CDs (48).63 The effect of MeCN and MeOH on the alkaline hydrolysis of acetylsalicylic acid in aqueous micellar solutions was reported.64 Butylaminolysis of p-nitrophenyl acetate in chlorobenzene in the presence of different kinds of phase-transfer catalysts (crown ethers and gly-mes) supported the existence of a novel reaction pathway exhibiting a first-order dependence on the concentration of the phase-transfer catalyst and a second-order... [Pg.68]

Phase transfer catalysis succeeds for two reasons First it provides a mechanism for introducing an anion into the medium that contains the reactive substrate More important the anion is introduced m a weakly solvated highly reactive state You ve already seen phase transfer catalysis m another form m Section 16 4 where the metal complexmg properties of crown ethers were described Crown ethers permit metal salts to dissolve m nonpolar solvents by surrounding the cation with a lipophilic cloak leav mg the anion free to react without the encumbrance of strong solvation forces... [Pg.926]

A method for the polymerization of polysulfones in nondipolar aprotic solvents has been developed and reported (9,10). The method reUes on phase-transfer catalysis. Polysulfone is made in chlorobenzene as solvent with (2.2.2)cryptand as catalyst (9). Less reactive crown ethers require dichlorobenzene as solvent (10). High molecular weight polyphenylsulfone can also be made by this route in dichlorobenzene however, only low molecular weight PES is achievable by this method. Cross-linked polystyrene-bound (2.2.2)cryptand is found to be effective in these polymerizations which allow simple recovery and reuse of the catalyst. [Pg.462]

With the discovery of the crowns and related species, it was inevitable that a search would begin for simpler and simpler relatives which might be useful in similar applications. Perhaps these compounds would be easier and more economical to prepare and ultimately, of course, better in one respect or another than the molecules which inspired the research. In particular, the collateral developments of crown ether chemistry and phase transfer catalysis fostered an interest in utilizing the readily available polyethylene glycol mono- or dimethyl ethers as catalysts for such reactions. Although there is considerable literature in this area, much of it relates to the use of simple polyethylene glycols in phase transfer processes. Since our main concern in this monograph is with novel structures, we will discuss these simple examples further only briefly, below. [Pg.311]

In specific applications to phase transfer catalysis, Knbchel and his coworkers compared crown ethers, aminopolyethers, cryptands, octopus molecules ( krakenmole-kiile , see below) and open-chained polyether compounds. They determined yields per unit time for reactions such as that between potassium acetate and benzyl chloride in acetonitrile solution. As expected, the open-chained polyethers were inferior to their cyclic counterparts, although a surprising finding was that certain aminopolyethers were superior to the corresponding crowns. [Pg.312]

Early work on the use of chiral phase-transfer catalysis in asymmetric Darzens reactions was conducted independently by the groups of Wynberg [38] and Co-lonna [39], but the observed asymmetric induction was low. More recently Toke s group has used catalytic chiral aza crown ethers in Darzens reactions [40-42], but again only low to moderate enantioselectivities resulted. [Pg.22]

Phase transfer catalysis (PTC) refers to the transfer of ions or organic molecules between two liquid phases (usually water/organic) or a liquid and a solid phase using a catalyst as a transport shuttle. The most common system encountered is water/organic, hence the catalyst must have an appropriate hydrophilic/lipophilic balance to enable it to have compatibility with both phases. The most useful catalysts for these systems are quaternary ammonium salts. Commonly used catalysts for solid-liquid systems are crown ethers and poly glycol ethers. Starks (Figure 4.5) developed the mode of action of PTC in the 1970s. In its most simple... [Pg.119]

Mathias, L. J. Carraher, C. E., Eds. Crown Ethers and Phase Transfer Catalysis in Polymer Science Plenum Press, New York,... [Pg.437]

Crown Ethers Nucleophilic Substitution Reactions in Relatively Nonpolar Aprotic Solvents by Phase-Transfer Catalysis... [Pg.449]

In phase transfer catalysis of the solid/liquid type, the organic phase (containing dissolved organic reactant and a small amount of the crown) is mixed directly with the solid inorganic salt. Such a procedure enables the reaction to proceed under anhydrous conditions this is a distinct advantage, for example, when hydrolysis is a possible competing reaction. Because of their open structure, crown ethers are readily able to abstract cations from a crystalline solid and are often the catalysts of choice for many solid/liquid phase transfer reactions. [Pg.109]

Asymmetric phase-transfer catalysis using chiral nonra-cemic onium salts or crown ethers has now grown into a practical method whereby a large number of reactions can be performed and some optically pure compounds can be produced effectively on a large scale. [Pg.402]

Reactions performed under two-phase conditions are further complicated by the partitioning of the reactants and catalyst over the two phases. In the case of quaternary ammonium phase-transfer catalysis, the mechanistic aspects have received a great deal of attention (Brandstrom, 1977 Makosza, 1975 Starks and Owens, 1973). In contrast, the mechanism of crown ether-type phase-transfer catalysis has hardly been investigated at all, despite its... [Pg.312]

The cocatalytic effects of pinacol in the phase transfer catalysis (PTC) of dihalocarbene additions to alkenes were noted by Dehmlow and co-workers who showed that pinacol accelerates the PTC deprotonation of substrates up to pKa 27.7 Dehmlow also studied the effects of various crown ethers as phase transfer catalysts in the addition of dibromocarbene to allylic bromides.8 In Dehmlow s study, elevated temperature (40°C) and dibenzo-18-crown-6 did not give the highest ratio of addition/substitution to allyl bromide. However, the submitters use of pinacol,... [Pg.199]

It was a result of demand from industry in the mid-1960s for an alternative to be found for the expensive traditional synthetic procedures that led to the evolution of phase-transfer catalysis in which hydrophilic anions could be transferred into an organic medium. Several phase-transfer catalysts are available quaternary ammonium, phosphonium and arsonium salts, crown ethers, cryptands and polyethylene glycols. Of these, the quaternary ammonium salts are the most versatile and, compared with the crown ethers, which have many applications, they have the advantage of being relatively cheap, stable and non-toxic [1, 2]. Additionally, comparisons of the efficiencies of the various catalysts have shown that the ammonium salts are superior to the crown ethers and polyethylene glycols and comparable with the cryptands [e.g. 3, 4], which have fewer proven applications and require higher... [Pg.1]

In contrast, liquidiliquid phase-transfer catalysis is virtually ineffective for the conversion of a-bromoacetamides into aziridones (a-lactams). Maximum yields of only 17-23% have been reported [31, 32], using tetra-n-butylammonium hydrogen sulphate or benzyltriethylammonium bromide over a reaction time of 4-6 days. It is significant that a solidiliquid two-phase system, using solid potassium hydroxide in the presence of 18-crown-6 produces the aziridones in 50-94% yield [33], but there are no reports of the corresponding quaternary ammonium ion catalysed reaction. Under the liquidiliquid two-phase conditions, the major product of the reaction is the piperazine-2,5-dione, resulting from dimerization of the bromoacetamide [34, 38]. However, only moderate yields are isolated and a polymer-supported catalyst appears to provide the best results [34, 38], Significant side reactions result from nucleophilic displacement by the aqueous base to produce hydroxyamides and ethers. [Pg.183]

The general concept of phase transfer catalysis applies to the transfer of any species from one phase to another (not just anions as illustrated above), provided a suitable catalyst can be chosen, and provided suitable phase compositions and reaction conditions are used. Most published work using PTC deals only with the transfer of anionic reactants using either quaternary ammonium or phosphonium salts, or with crown ethers in liquid-liquid or liquid-solid systems. Examples of the transfer and reaction of other chemical species have been reported(24) but clearly some of the most innovative work in this area has been done by Alper and his co-workers, as described in Chapter 2. He illustrates that gas-liquid-liquid transfers with complex catalyst systems provide methods for catalytic hydrogenations with gaseous hydrogen. [Pg.2]

The first examples of the application of phase-transfer catalysis (PTC) were described by Jarrousse in 1951 (1), but it was not until 1965 that Makosza developed many fundamental aspects of this technology (2,3). Starks characterized the mechanism and coined a name for it (4,5), whilst Brandstrom studied the use of stoichiometric amounts of quaternary ammonium salts in aprotic solvents, "ion-pair extraction" (6). In the meantime Pedersen and Lehn discovered crown-ethers (7-9) and cryptands (10,11), respectively. [Pg.54]

See Symposium on Crown Ethers and Phase Transfer Catalysis in Polymer Chemistry , Polym. Prepr., Am. Chem Soc., Div. Polym. Chem. 1982, 23(1), 139-192 and references therein. [Pg.141]

The other approach called upon phase-transfer catalysis (31). The potassium salt of 2,5-furandicarboxylic acid 11a was treated with primary aliphatic dihalides in a typical solid/liquid system in the presence of a crown ether. The resulting furanic-aliphatic polyesters had molecular weights of... [Pg.203]


See other pages where Phase transfer catalysis crown ethers is mentioned: [Pg.739]    [Pg.739]    [Pg.739]    [Pg.739]    [Pg.739]    [Pg.739]    [Pg.739]    [Pg.739]    [Pg.447]    [Pg.495]    [Pg.2092]    [Pg.377]    [Pg.121]    [Pg.524]    [Pg.140]    [Pg.38]    [Pg.127]    [Pg.128]    [Pg.100]    [Pg.758]   
See also in sourсe #XX -- [ Pg.212 , Pg.217 ]




SEARCH



Crown ethers catalysis

Crown ethers phase transfer catalysis involving

Phase crown ethers

© 2024 chempedia.info