Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase space systems

Figure Al.2.7. Trajectory of two coupled stretches, obtained by integrating Hamilton s equations for motion on a PES for the two modes. The system has stable anhamionic synmretric and antisyimnetric stretch modes, like those illustrated in figrne Al.2.6. In this trajectory, semiclassically there is one quantum of energy in each mode, so the trajectory corresponds to a combination state with quantum numbers nj = [1, 1]. The woven pattern shows that the trajectory is regular rather than chaotic, corresponding to motion in phase space on an invariant torus. Figure Al.2.7. Trajectory of two coupled stretches, obtained by integrating Hamilton s equations for motion on a PES for the two modes. The system has stable anhamionic synmretric and antisyimnetric stretch modes, like those illustrated in figrne Al.2.6. In this trajectory, semiclassically there is one quantum of energy in each mode, so the trajectory corresponds to a combination state with quantum numbers nj = [1, 1]. The woven pattern shows that the trajectory is regular rather than chaotic, corresponding to motion in phase space on an invariant torus.
The question of non-classical manifestations is particularly important in view of the chaos that we have seen is present in the classical dynamics of a multimode system, such as a polyatomic molecule, with more than one resonance coupling. Chaotic classical dynamics is expected to introduce its own peculiarities into quantum spectra [29, 77]. In Fl20, we noted that chaotic regions of phase space are readily seen in the classical dynamics corresponding to the spectroscopic Flamiltonian. Flow important are the effects of chaos in the observed spectrum, and in the wavefiinctions of tire molecule In FI2O, there were some states whose wavefiinctions appeared very disordered, in the region of the... [Pg.76]

The set of microstates of a finite system in quantum statistical mechanics is a finite, discrete denumerable set of quantum states each characterized by an appropriate collection of quantum numbers. In classical statistical mechanics, the set of microstates fonn a continuous (and therefore infinite) set of points in f space (also called phase space). [Pg.382]

The hypersurface fomied from variations in the system s coordinates and momenta at//(p, q) = /Tis the microcanonical system s phase space, which, for a Hamiltonian with 3n coordinates, has a dimension of 6n -1. The assumption that the system s states are populated statistically means that the population density over the whole surface of the phase space is unifomi. Thus, the ratio of molecules at the dividing surface to the total molecules [dA(qi, p )/A]... [Pg.1011]

It is convenient to analyse tliese rate equations from a dynamical systems point of view similar to tliat used in classical mechanics where one follows tire trajectories of particles in phase space. For tire chemical rate law (C3.6.2) tire phase space , conventionally denoted by F, is -dimensional and tire chemical concentrations, CpC2,- are taken as ortliogonal coordinates of F, ratlier tlian tire particle positions and velocities used as tire coordinates in mechanics. In analogy to classical mechanical systems, as tire concentrations evolve in time tliey will trace out a trajectory in F. Since tire velocity functions in tire system of ODEs (C3.6.2) do not depend explicitly on time, a given initial condition in F will always produce tire same trajectory. The vector R of velocity functions in (C3.6.2) defines a phase-space (or trajectory) flow and in it is often convenient to tliink of tliese ODEs as describing tire motion of a fluid in F with velocity field/ (c p). [Pg.3055]

For certain parameter values tliis chemical system can exlribit fixed point, periodic or chaotic attractors in tire tliree-dimensional concentration phase space. We consider tire parameter set... [Pg.3056]

Excitable media are some of tire most commonly observed reaction-diffusion systems in nature. An excitable system possesses a stable fixed point which responds to perturbations in a characteristic way small perturbations return quickly to tire fixed point, while larger perturbations tliat exceed a certain tlireshold value make a long excursion in concentration phase space before tire system returns to tire stable state. In many physical systems tliis behaviour is captured by tire dynamics of two concentration fields, a fast activator variable u witli cubic nullcline and a slow inhibitor variable u witli linear nullcline [31]. The FitzHugh-Nagumo equation [34], derived as a simple model for nerve impulse propagation but which can also apply to a chemical reaction scheme [35], is one of tire best known equations witli such activator-inlribitor kinetics ... [Pg.3064]

For larger systems, various approximate schemes have been developed, called mixed methods as they treat parts of the system using different levels of theory. Of interest to us here are quantuin-seiniclassical methods, which use full quantum mechanics to treat the electrons, but use approximations based on trajectories in a classical phase space to describe the nuclear motion. The prefix quantum may be dropped, and we will talk of seiniclassical methods. There are a number of different approaches, but here we shall concentrate on the few that are suitable for direct dynamics molecular simulations. An overview of other methods is given in the introduction of [21]. [Pg.252]

To return to the simple picture of vertical excitation, the question remains as to how a wavepacket can be simulated using classical trajectories A classical ensemble can be specified by its distribution in phase space, Pd(p,Q), which gives the probability of finding the system of particles with momentum p and position q. In conUast, it is strictly impossible to assign simultaneously a position and momentum to a quantum particle. [Pg.270]

Extension to the multidimensional case is trivial. Wigner developed a complete mechanical system, equivalent to quantum mechanics, based on this distribution. He also showed that it satisfies many properties desired by a phase-space distribution, and in the high-temperature limit becomes the classical distribution. [Pg.270]

Note that despite the form this cannot be interpreted as the probability of finding a particle at a point in phase space, and in fact the function can become negative. Obtaining for a system is also not straightforward. For a hamionic... [Pg.270]

The Hemian-Kluk method has been developed further [153-155], and used in a number of applications [156-159]. Despite the formal accuracy of the approach, it has difficulties, especially if chaotic regions of phase space are present. It also needs many trajectories to converge, and the initial integration is time consuming for large systems. Despite these problems, the frozen Gaussian approximation is the basis of the spawning method that has been applied to... [Pg.275]

As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

From a mathematical point of view, conformations are special subsets of phase space a) invariant sets of MD systems, which correspond to infinite durations of stay (or relaxation times) and contain all subsets associated with different conformations, b) almost invariant sets, which correspond to finite relaxation times and consist of conformational subsets. In order to characterize the dynamics of a system, these subsets are the interesting objects. As already mentioned above, invariant measures are fixed points of the Frobenius-Perron operator or, equivalently, eigenmodes of the Frobenius-Perron operator associated with eigenvalue exactly 1. In view of this property, almost invariant sets will be understood to be connected with eigenmodes associated with (real) eigenvalues close (but not equal) to 1 - an idea recently developed in [6]. [Pg.104]

Pq r) may be negative or even imaginary. We then say that the probability of the system accessing that point in phase space is zero. This may be the case even when the energy is finite. [Pg.198]

Is the temperature 1/0 related to the variance of the momentum distribution as in the classical equipartition theorem It happens that there is no simple generalization of the equipartition theorem of classical statistical mechanics. For the 2N dimensional phase space F = (xi. .. XN,pi,.. -Pn) the ensemble average for a harmonic system is... [Pg.199]

We consider a two state system, state A and state B. A state is defined as a domain in phase space that is (at least) in local equilibrium since thermodynamic variables are assigned to it. We assume that A or B are described by a local canonical ensemble. There are no dark or hidden states and the probability of the system to be in either A or in B is one. A phenomenological rate equation that describes the transitions between A and B is... [Pg.276]

B(A) is the probability of observing the system in state A, and B(B) is the probability of observing state B. In this model, the space is divided exactly into A and B. The dividing hyper-surface between the two is employed in Transition State Theory for rate calculations [19]. The identification of the dividing surface, which is usually assumed to depend on coordinates only, is a non-trivial task. Moreover, in principle, the dividing surface is a function of the whole phase space - coordinates and velocities, and therefore the exact calculation of it can be even more complex. Nevertheless, it is a crucial ingredient of the IVansition State Theory and variants of it. [Pg.276]

One property of the exact trajectory for a conservative system is that the total energy is a constant of the motion. [12] Finite difference integrators provide approximate solutions to the equations of motion and for trajectories generated numerically the total energy is not strictly conserved. The exact trajectory will move on a constant energy surface in the 61V dimensional phase space of the system defined by. [Pg.300]

The exact propagator for a Hamiltonian system for any given time increment At is symplectic. As a consequence it possesses the Liouville property of preserving volume in phase space. [Pg.320]


See other pages where Phase space systems is mentioned: [Pg.722]    [Pg.781]    [Pg.1057]    [Pg.2249]    [Pg.2271]    [Pg.2382]    [Pg.2860]    [Pg.3056]    [Pg.3057]    [Pg.3060]    [Pg.3061]    [Pg.226]    [Pg.231]    [Pg.245]    [Pg.7]    [Pg.149]    [Pg.197]    [Pg.197]    [Pg.230]    [Pg.314]    [Pg.319]   


SEARCH



Hamiltonian systems phase-space structure

Hamiltonian systems phase-space transition states

Mixed phase space, Hamiltonian systems

Mixed phase space, Hamiltonian systems anomalous transport

Phase space

Phase space systems Arnold model

Phase space systems connections

Phase space systems multidimensional scaling

Phase space systems normally hyperbolic invariant manifold

Phase space systems regularity

Phase space systems slow relaxation dynamics

Space systems

© 2024 chempedia.info