Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase separation stable

If two pure, immiscible liquids, such as benzene and water, are vigorously shaken together, they will form a dispersion, but it is doubtful that one phase or the other will be uniquely continuous or dispersed. On stopping the agitation, phase separation occurs so quickly that it is questionable whether the term emulsion really should be applied to the system. A surfactant component is generally needed to obtain a stable or reasonably stable emulsion. Thus, if a little soap is added to the benzene-water system, the result on shaking is a true emulsion that separates out only very slowly. Theories of... [Pg.503]

Copolymerizations of benzvalene with norhornene have been used to prepare block copolymers that are more stable and more soluble than the polybenzvalene (32). Upon conversion to (CH), some phase separation of nonconverted polynorhornene occurs. Other copolymerizations of acetylene with a variety of monomers and carrier polymers have been employed in the preparation of soluble polyacetylenes. Direct copolymeriza tion of acetylene with other monomers (33—39), and various techniques for grafting polyacetylene side chains onto solubilized carrier polymers (40—43), have been studied. In most cases, the resulting copolymers exhibit poorer electrical properties as solubiUty increases. [Pg.36]

Silica gel, per se, is not so frequently used in LC as the reversed phases or the bonded phases, because silica separates substances largely by polar interactions with the silanol groups on the silica surface. In contrast, the reversed and bonded phases separate material largely by interactions with the dispersive components of the solute. As the dispersive character of substances, in general, vary more subtly than does their polar character, the reversed and bonded phases are usually preferred. In addition, silica has a significant solubility in many solvents, particularly aqueous solvents and, thus, silica columns can be less stable than those packed with bonded phases. The analytical procedure can be a little more complex and costly with silica gel columns as, in general, a wider variety of more expensive solvents are required. Reversed and bonded phases utilize blended solvents such as hexane/ethanol, methanol/water or acetonitrile/water mixtures as the mobile phase and, consequently, are considerably more economical. Nevertheless, silica gel has certain areas of application for which it is particularly useful and is very effective for separating polarizable substances such as the polynuclear aromatic hydrocarbons and substances... [Pg.93]

The presence of ions in an otherwise organic matrix is not thermodynamically stable. As a result these materials undergo slight phase separation in which the ions cluster together in aggregates. These ionic clusters are quite... [Pg.149]

Boundary lines between phases separate the regions where each phase is stable. [Pg.807]

An important problem in emulsified organic-aqueous systems is that of scale-up, which is concerned with the realization of stable emulsions and the separation of phases after the reaction. The use of biphasic membrane systems that contain the enzyme and keep the two phases separated is likely to solve this problem. In the case of 5-naproxen an ee of 92% has been demonstrated without any decay in activity over a period of two weeks of continuous operation. A number of examples of biocatalytic membrane reactors have been provided by Giorno and Drioli (2000) and include the conversion of fumaric acid to L-aspartic acid, L-aspartic acid to L-alanine, and cortexolone to hydrocortisone and prednisolone. [Pg.162]

The application of polymer monoliths in 2D separations, however, is very attractive in that polymer-based packing materials can provide a high performance, chemically stable stationary phase, and better recovery of biological molecules, namely proteins and peptides, even in comparison with C18 phases on silica particles with wide mesopores (Tanaka et al., 1990). Microchip fabrication for 2D HPLC has been disclosed in a recent patent, based on polymer monoliths (Corso et al., 2003). This separation system consists of stacked separation blocks, namely, the first block for ion exchange (strong cation exchange) and the second block for reversed-phase separation. This layered separation chip device also contains an electrospray interface microfabricated on chip (a polymer monolith/... [Pg.152]

PVA and TaM -for the 88%-hydrolyzed PVA. The same dependence was found for the adsorbed layer thickness measured by viscosity and photon correlation spectroscopy. Extension of the adsorption isotherms to higher concentrations gave a second rise in surface concentration, which was attributed to multilayer adsorption and incipient phase separation at the interface. The latex particle size had no effect on the adsorption density however, the thickness of the adsorbed layer increased with increasing particle size, which was attributed to changes in the configuration of the adsorbed polymer molecules. The electrolyte stability of the bare and PVA-covered particles showed that the bare particles coagulated in the primary minimum and the PVA-covered particles flocculated in the secondary minimum and the larger particles were less stable than the smaller particles. [Pg.77]

All liposphere formulations prepared remained stable during the 3-month period of the study, and no phase separation or appearance of aggregates were observed. The difference between polymeric lipospheres and the standard liposphere formulations is the composition of the internal core of the particles. Standard lipospheres, such as those previously described, consist of a solid hydrophobic fat core composed of neutral fats like tristearin, whereas, in the polymeric lipospheres, biodegradable polymers such as polylactide or polycaprolactone were substituted for the triglycerides. Both types of lipospheres are thought to be stabilized by one layer of phospholipid molecules embedded in their surface. [Pg.6]


See other pages where Phase separation stable is mentioned: [Pg.26]    [Pg.26]    [Pg.26]    [Pg.26]    [Pg.738]    [Pg.2595]    [Pg.80]    [Pg.289]    [Pg.150]    [Pg.298]    [Pg.558]    [Pg.744]    [Pg.101]    [Pg.261]    [Pg.273]    [Pg.332]    [Pg.712]    [Pg.761]    [Pg.58]    [Pg.156]    [Pg.275]    [Pg.132]    [Pg.118]    [Pg.443]    [Pg.601]    [Pg.154]    [Pg.316]    [Pg.578]    [Pg.592]    [Pg.350]    [Pg.216]    [Pg.57]    [Pg.136]    [Pg.138]    [Pg.231]    [Pg.17]    [Pg.34]    [Pg.48]    [Pg.78]    [Pg.89]    [Pg.302]    [Pg.315]    [Pg.9]    [Pg.142]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Stable phase

© 2024 chempedia.info