Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolites pharmacokinetics

The pharmacokinetics of azacitidine shows that it is rapidly absorbed after s.c. administration with the peak plasma concentration occurring after 0.5 h. The bioavailability of s.c. azacitidine relative to i.v. azacitidine is approximately 89%. Urinary excretion is the primary route of elimination of azacitidine and its metabolites. The mean elimination half-lives are about 4 h, regardless of i.v. or s.c. administration. [Pg.152]

Little is known regarding the pharmacokinetic properties of volatile nitrites in humans, particularly isobutyl nitrite and its primary metabolite, isobutyl alcohol. In rodents, after an intravenous infusion of isobutyl nitrite, blood concentrations peaked rapidly and then declined, with a half-life of 1.4 minutes and blood clearance rate of 2.9 L/min/kg (Kielbasa and Fung 2000). Approximately 98% of isobutyl nitrite is metabolized rapidly to isobutyl alcohol, concentrations of which also decline rapidly, with a half-life of 5.3 minutes. Bioavailability of inhaled isobutyl nitrite at a concentration of 300-900 ppm is estimated to be 43%. [Pg.275]

Kielbasa W, Fung HL Pharmacokinetics of a model organic nitrite inhalant and its alcohol metabolite in rats. Drug Metab Dispos 28 386-391, 2000... [Pg.308]

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent chemical or metabolite in an animal system. There are two types of pharmacokinetic models data-based and physiologically-based. A data-based model divides the animal system into a series of compartments which, in general, do not represent real, identifiable anatomic regions of the body whereby the physiologically-based model compartments represent real anatomic regions of the body. [Pg.244]

No data were located concerning whether pharmacokinetics of endosulfan in children are different from adults. There are no adequate data to determine whether endosulfan or its metabolites can cross the placenta. Studies in animals addressing these issues would provide valuable information. Although endosulfan has been detected in human milk (Lutter et al. 1998), studies in animals showed very little accumulation of endosulfan residues in breast milk (Gorbach et al. 1968 Indraningsih et al. 1993), which is consistent with the rapid elimination of endosulfan from tissues and subsequent excretion via feces and urine. There are no PBPK models for endosulfan in either adults or children. There is no information to evaluate whether absorption, distribution, metabolism, or excretion of endosulfan in children is different than in adults. [Pg.200]

Clewell HJ 3rd, Gentry PR, Covington TR, Gearhart JM. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 2000 May 108 Suppl 2 283-305. [Pg.551]

Fisher JW, Whittaker TA, Taylor DH, et al. 1989. Physiologically based pharmacokinetic modeling of the pregnant rat A multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol 99 395-414. [Pg.266]

Sato A, Nakajima T, Fujiwara Y, et al. 1977. A pharmacokinetic model to study the excretion of trichloroethylene and its metabolites after an inhalation exposure. Br J Ind Med 34 55-63. [Pg.288]

Calculation of ID using biological monitoring techniques requires the knowledge of the pharmacokinetics of the parent pesticide in laboratory animals. This will allow the use of the parent or its urine metabolite(s) to calculate the total amount of the parent that had been absorbed through the skin of the test subject. The amount of the residue in the urine should be corrected for any molecular weight differences between the parent and its urine metabolite(s) and also corrected for daily urine excretion volumes based on creatinine analysis of the urine samples. [Pg.1021]

Daunorubicin is an anthracycline that is sometimes referred to as an antitumor antibiotic. Daunorubicin inserts between base pairs of DNA to cause structural changes in DNA however, the primary mechanism of cytotoxicity is the inhibition of topoisomerase II. The pharmacokinetics are best described by a two-compartment model, with a terminal half-life of about 20 hours. The predominant route of elimination of daunorubicin and hydroxylated metabolites is hepatobiliary... [Pg.1288]

Idarubicin inhibits both DNA and RNA polymerase, as well as topoisomerase II. The pharmacokinetics of idarubicin can best be described by a three-compartment model, with an a half-life of 13 minutes, a (3 half-life of 2.4 hours, and a terminal half-life of 16 hours.22 Idarubicin is metabolized to an active metabolite, idarubicinol, which has a half-life of 41 to 69 hours. Idarubicin and idarubicinol are eliminated by the liver and through the bile. Idarubicin has shown clinical activity in the treatment of acute leukemias, chronic myelogenous leukemia, and myelodysplastic syndromes. Idarubicin causes cardiomyopathy at cumulative doses of greater than 150 mg/m2 and produces cumulative cardiotoxic effects with other anthracyclines. Idarubicin is a vesicant and causes red-orange urine, mucositis, mild to moderate nausea and vomiting, and bone marrow suppression. [Pg.1289]

Toremifene is an estrogen receptor antagonist. The pharmacokinetics of toremifene are best described by a two-compartment model, with an a half-life of 4 hours and an elimination half-life of 5 days. Peak plasma concentrations are achieved approximately 3 hours after an oral dose. Toremifene is metabolized extensively, with metabolites found primarily in the feces. Toremifene is used for the treatment of metastatic breast cancer in postmenopausal women with estrogen-receptor-positive or unknown tumors. Toremifene causes hot flashes, vaginal bleeding, thromboembolism, and visual acuity changes. [Pg.1297]

Absorption, Distribution, Metabolism, and Excretion. There are no data available on the absorption, distribution, metabolism, or excretion of diisopropyl methylphosphonate in humans. Limited animal data suggest that diisopropyl methylphosphonate is absorbed following oral and dermal exposure. Fat tissues do not appear to concentrate diisopropyl methylphosphonate or its metabolites to any significant extent. Nearly complete metabolism of diisopropyl methylphosphonate can be inferred based on the identification and quantification of its urinary metabolites however, at high doses the metabolism of diisopropyl methylphosphonate appears to be saturated. Animal studies have indicated that the urine is the principal excretory route for removal of diisopropyl methylphosphonate after oral and dermal administration. Because in most of the animal toxicity studies administration of diisopropyl methylphosphonate is in food, a pharmacokinetic study with the compound in food would be especially useful. It could help determine if the metabolism of diisopropyl methylphosphonate becomes saturated when given in the diet and if the levels of saturation are similar to those that result in significant adverse effects. [Pg.108]

Yue, Q.Y. et al. (1998). Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin. Pharmacol. Ther., 64, 384-90. [Pg.61]

Also, if conversion of drug to active metabolite shows significant departure from linear pharmacokinetics, it is possible that small differences in the rate of absorption of the parent drug (even within the 80-125% range for log transformed data) could result in clinically significant differences in the concentration/ time profiles for the active metabolite. When reliable data indicate that this situation may exist, a requirement of quantification of active metabolites in a bioequivalency study would seem to be fully justified. [Pg.755]

The drug should show linear pharmacokinetics and should not be converted to an active metabolite that plays a substantial role in the therapeutic or toxic properties of the product. [Pg.759]


See other pages where Metabolites pharmacokinetics is mentioned: [Pg.291]    [Pg.291]    [Pg.111]    [Pg.298]    [Pg.253]    [Pg.923]    [Pg.1198]    [Pg.127]    [Pg.148]    [Pg.121]    [Pg.143]    [Pg.175]    [Pg.110]    [Pg.190]    [Pg.280]    [Pg.440]    [Pg.192]    [Pg.223]    [Pg.224]    [Pg.224]    [Pg.680]    [Pg.1016]    [Pg.750]    [Pg.130]    [Pg.131]    [Pg.1283]    [Pg.1287]    [Pg.1288]    [Pg.1289]    [Pg.1295]    [Pg.42]    [Pg.44]   
See also in sourсe #XX -- [ Pg.178 , Pg.193 ]




SEARCH



Pharmacokinetics active metabolites

Pharmacokinetics drug metabolites

Pharmacokinetics metabolite profiling

Pharmacokinetics of metabolites

© 2024 chempedia.info