Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Periodic table importance

So far, this chapter has covered some important aspects of atoms. These include the facts that an atom is made of three major subatomic particles, and consists of a very small, very dense, positively charged nucleus surrounded by a cloud of negatively charged electrons in constant, rapid motion. The first 20 elements have been discussed in some detail and placed in an abbreviated version of the periodic table. Important concepts introduced so far in this chapter include ... [Pg.107]

The periodic table is the most important chemistry reference there is. It arranges all the known elements in an informative array. Elements are arranged left to right and top to bottom in order of increasing atomic number.. This order generally coincides with increasing atomic mass... [Pg.219]

The strength of an acid depends on the atom to which the proton is bonded The two mam factors are the strength of the H—X bond and the electronegativity of X Bond strength is more important for atoms m the same group of the periodic table electronegativity is more important for atoms m the same row Electronegative atoms elsewhere m the molecule can increase the acidity by inductive effects... [Pg.50]

One of the important advantages of NAA is its applicability to almost all elements in the periodic table. Another advantage of neutron activation is that it is nondestructive. Consequently, NAA is an important technique for analyzing archaeological and forensic samples, as well as works of art. [Pg.646]

Ground-state electronic configuration is ls 2s 2p 3s 3p 3i 4s. Manganese compounds are known to exist in oxidation states ranging from —3 to +7 (Table 2). Both the lower and higher oxidation states are stabilized by complex formation. In its lower valence, manganese resembles its first row neighbors chromium and especially iron ia the Periodic Table. Commercially the most important valances are Mn, Mn ", or Mn ". ... [Pg.501]

Approximately three-quarters of the elements in the Periodic Table are metals. The winning, refining, and fabrication of these metals for commercial use together represent the complex and diverse field of metallurgy. Metallurgy has played a vital role in society for thousands of years, yet it continues to advance and to have increasing importance in many areas of science and technology. [Pg.160]

Fig. 1. Periodic Table showing elements of importance in biological systems principal element of bioorganic compounds essential mineral nutrients for humans and other animals 1 essential mineral nutrient for animals, probably for humans M present in body, not known to be a nutrient or toxic element M element used in medicine element generally poisonous and present in body, possibly toxic. Fig. 1. Periodic Table showing elements of importance in biological systems principal element of bioorganic compounds essential mineral nutrients for humans and other animals 1 essential mineral nutrient for animals, probably for humans M present in body, not known to be a nutrient or toxic element M element used in medicine element generally poisonous and present in body, possibly toxic.
Because of its position in the Periodic Table, molybdenum has sometimes been linked to chromium (see Chromiumand chromium alloys) or to other heavy metals. However, unlike those elements, molybdenum and its compounds have relatively low toxicity, as shown in Table 3. On the other hand, molybdenum has been identified as a micronutrient essential to plant life (11,12) (see Fertilizers), and plays a principal biochemical role in animal health as a constituent of several important enzyme systems (see Mineral nutrients). [Pg.463]

Physical Properties. Molybdenum has many unique properties, leading to its importance as a refractory metal (see Refractories). Molybdenum, atomic no. 42, is in Group 6 (VIB) of the Periodic Table between chromium and tungsten vertically and niobium and technetium horizontally. It has a silvery gray appearance. The most stable valence states are +6, +4, and 0 lower, less stable valence states are +5, +3, and +2. [Pg.463]

Plutonium [7440-07-5] Pu, element number 94 in the Periodic Table, is a member of the actinide series and is metaUic (see Actinides and transactinides). Isotopes of mass number 232 through 246 have been identified. AH are radioactive. The most important isotope is plutonium-239 [15117-48-3] Pu also of importance are Pu, Pu, and Pu. [Pg.191]

Sulfur [7704-34-9] S, a nonmetallic element, is the second element of Group 16 (VIA) of the Periodic Table, coming below oxygen and above selenium. In massive elemental form, sulfur is often referred to as brimstone. Sulfur is one of the most important taw materials of the chemical industry. It is of prime importance to the fertilizer industry (see Fertilizers) and its consumption is generally regarded as one of the best measures of a nation s industrial development and economic activity (see Sulfur compounds Sulfurremoval and recovery Sulfuric acid and sulfur trioxide). [Pg.115]

Bases of low polarizabiUty such as fluoride and the oxygen donors are termed hard bases. The corresponding class a cations are called hard acids the class b acids and the polarizable bases are termed soft acids and soft bases, respectively. The general rule that hard prefers hard and soft prefers soft prevails. A classification is given in Table 3. Whereas the divisions are arbitrary, the trends are important. Attempts to provide quantitative gradations of "hardness and softness" have appeared (14). Another generaUty is the usual increase in stabiUty constants for divalent 3t5 ions that occurs across the row of the Periodic Table through copper and then decreases for zinc (15). [Pg.168]

Quite extraordinary diffusion coefficients of impurities from odier parts of die Periodic Table are found, and especially in die important case of lidiium or copper diffusion, where die eidiancement over self-diffusion is by six to eight orders of magnitude. This indicates diat diese atoms do not form part of die sp network in die sUmcture, but more closely resemble separate atoms in die sp iiiaUix. [Pg.223]

LIMS is primarily used in failure microanalysis applications, which make use of its survey capability, and its high sensitivity toward essentially all elements in the periodic table. The ability to provide organic molecular information on a microanalyt-ical scale is another distinctive feature of LIMS, one that is likely to become more important in the future, with improved knowledge of laser desorption and ionization mechanisms. [Pg.596]

One of the important advantages of ICPMS in problem solving is the ability to obtain a semiquantitative analysis of most elements in the periodic table in a few minutes. In addition, sub-ppb detection limits may be achieved using only a small amount of sample. This is possible because the response curve of the mass spectrometer over the relatively small mass range required for elemental analysis may be determined easily under a given set of matrix and instrument conditions. This curve can be used in conjunction with an internal or external standard to quantily within the sample. A recent study has found accuracies of 5—20% for this type of analysis. The shape of the response curve is affected by several factors. These include matrix (particularly organic components), voltages within the ion optics, and the temperature of the interffice. [Pg.630]

Basis sets for atoms beyond the third row of the periodic table are handled somewhat differently. For these very large nuclei, electrons near the nucleus are treated in an approximate way, via effective core potentials (ECPs). This treatment includes some relativistic effects, which are important in these atoms. The LANL2DZ basis set is the best known of these. [Pg.101]

Some of the important properties of the elements are given in Table 18.1. The imprecision of the atomic weights of Kr and Xe reflects the natural occurrence of several isotopes of these elements. For He, however, and to a lesser extent Ar, a single isotope predominates ( He, 99.999 863% " Ar, 99.600%) and much greater precision is possible. The natural preponderance of " Ar is indeed responsible for the well-known inversion of atomic weight order of Ar and K in the periodic table, and the position of Ar in front of K was only finally accepted when it was shown that the atomic weight of He placed it in front of Li. The second isotope of helium, He, has only been available in significant amounts since... [Pg.890]

A contraction resulting from the filling of the 4f electron shell is of course not exceptional. Similar contractions occur in each row of the periodic table and, in the d block for instance, the ionic radii decrease by 20.5 pm from Sc to Cu , and by 15 pm from Y to Ag . The importance of the lanthanide contraction arises from its consequences ... [Pg.1234]


See other pages where Periodic table importance is mentioned: [Pg.13]    [Pg.13]    [Pg.80]    [Pg.393]    [Pg.219]    [Pg.40]    [Pg.338]    [Pg.176]    [Pg.326]    [Pg.538]    [Pg.64]    [Pg.184]    [Pg.438]    [Pg.438]    [Pg.330]    [Pg.2]    [Pg.33]    [Pg.282]    [Pg.650]    [Pg.87]    [Pg.18]    [Pg.292]    [Pg.262]    [Pg.40]    [Pg.7]    [Pg.49]    [Pg.144]    [Pg.277]    [Pg.475]    [Pg.789]    [Pg.913]    [Pg.57]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



© 2024 chempedia.info