Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perchlorates electrolytic processes

Electrolytic processes for the perchlorates.—F. von Stadion found that if an aq. soln. of chlorine dioxide be included in Volta s circuit, at first very little gas is developed, but after some hours, oxygen and chlorine appear at the anode, and hydrogen at the cathode. The volume of hydrogen so obtained is nearly twice that of the oxygen. After some time the soln. is decolorized, and transformed into perchloric acid. In 1857, A. Riche 18 prepared perchloric acid by the electrolysis of hydrochloric acid, or of an aq. soln. of chlorine and ten years earlier, H. Kolbe prepared potassium perchlorate by the electrolysis of an aq. soln. of potassium chloride—acidified with sulphuric acid—and of potassium trichloro-methyl-sulphonate. H. Kolbe (1846), a pioneer in the electrolytic preparation of compounds, specially noted that the formation of perchloric acid is always preceded by that of chloric acid, and stated ... [Pg.374]

Tlie anhyd salt is obtained when samples are recrystd from w above 53° below this temp a monohydrate is obtained (see below). The pure salt is best obtained on a lab scale by dissolving pure Na carbonate in a slight excess of dil aq perchloric ac, the soln partly evapd, cooled to 50°, the solid centrifuged off, and dried in a current of air at 250°. Similar results were obtained starting with pure Na chloride (Ref 2). On a coml scale it is prepd by the electrolysis of Na chlorate (see Vol 2, C197-R). Processing details and economics of the prepn are given in Refs 5 11. Coned solns are used, and modern plants use continuous electrolytic cells. In 1960 prodn was estimated to be ca 10000 tons/year at a cost of 17.56 /lb (Ref 11, p 87)... [Pg.644]

In pioneering studies [47], the SECM feedback mode was used to study the ET reaction between ferrocene (Fc), in nitrobenzene (NB), and the aqueous mediator, FcCOO, electrochemically generated at the UME by oxidation of the ferrocenemonocar-boxylate ion, FcCOO. Tetraethylammonium perchlorate (TEAP) was applied in both phases as the partitioning electrolyte. The results of this study indicated that the reaction at the ITIES was limited by the ET process, provided that there was a sufficiently high concentration of TEAP in both phases. [Pg.314]

At more positive potentials, processes occur that depend on the composition of the electrolyte, such as the formation of H2S2Og and HS05 in sulphuric acid solutions, while the CIO radical is formed in perchloric acid solutions, decomposing to form C102 and 02. The formation of ozone has been observed at high current densities in solutions of rather concentrated acids. [Pg.372]

Emersion has been shown to result in the retention of the double layer structure i.e, the structure including the outer Helmholtz layer. Thus, the electric double layer is characterised by the electrode potential, the surface charge on the metal and the chemical composition of the double layer itself. Surface resistivity measurements have shown that the surface charge is retained on emersion. In addition, the potential of the emersed electrode, , can be determined in the form of its work function, , since and represent the same quantity the electrochemical potential of the electrons in the metal. Figure 2.116 is from the work of Kotz et al. (1986) and shows the work function of a gold electrode emersed at various potentials from a perchloric acid solution the work function was determined from UVPES measurements. The linear plot, and the unit slope, are clear evidence that the potential drop across the double layer is retained before and after emersion. The chemical composition of the double layer can also be determined, using AES, and is consistent with the expected solvent and electrolyte. In practice, the double layer collapses unless (i) potentiostatic control is maintained up to the instant of emersion and (ii) no faradaic processes, such as 02 reduction, are allowed to occur after emersion. [Pg.227]

The anomalous features are observed on well-ordered (111) surfaces in a variety of electrolytes over a wide range of pH (0-11), but the potentials at which the features appear and the detailed shapes of the I-V curves vary considerably. Specifically, the potential region (versus RHE) in which the features appear changes with anion concentration in sulphate and chloride electrolytes, but not in fluoride, perchlorate, bicarbonate or hydroxide electrolyte. In sulfate electrolyte, at constant anion concentration the region shifts (versus RHE) with varying pH, while in fluoride, perchlorate, bicarbonate and hydroxide electrolyte it does not. The use of UHV surface analytical techniques has established to a reasonable (but not definitive) extent that adventitious impurities are not involved in the anomalous process, i.e., the only species participating in the chemistry are protons/hydroxyIs, water and the anions of the solute. On the basis of the pH and anion concentration dependencies, I agree with the... [Pg.40]

Adsorption of acetic acid on Pt(lll) surface was studied the surface concentration data were correlated with voltammetric profiles of the Pt(lll) electrode in perchloric acid electrolyte containing 0.5 mM of CHoCOOH. It is concluded that acetic acid adsorption is associative and occurs without a significant charge transfer across the interface. Instead, the recorded currents are due to adsorption/desorption processes of hydrogen, processes which are much better resolved on Pt(lll) than on polycrystalline platinum. A classification of adsorption processes on catalytic electrodes and atmospheric methods of preparation of single crystal electrodes are discussed. [Pg.245]

A second major event in the saga of polymer conductors was the discovery that the doping processes of polyacetylene could be promoted and driven electrochemically in a reversible fashion by polarising the polymer film electrode in a suitable electrochemical cell (MacDiarmid and Maxfield, 1987). Typically, a three-electrode cell, containing the (CH) film as the working electrode, a suitable electrolyte (e.g. a non-aqueous solution of lithium perchlorate in propylene carbonate, here abbreviated to LiC104-PC) and suitable counter (e.g. lithium metal) and reference (e.g. again Li) electrodes, can be used. [Pg.234]

Since perchlorate ions, and more generally the majority of anions used in common electrolyte systems, are known to move rapidly in liquid solutions, it is reasonable to assume that the rate determining step in controlling the kinetics of the overall process is the ion diffusion throughout the polymer fibrils. This conclusion has been experimentally confirmed. For example, the diffusion coefficient of electrolyte counterions in bulk polyacetylene has been determined (Will, 1985) to be seven orders of magnitude lower than in liquid electrolytes, namely about 10 cm s vs 10 cm s ... [Pg.249]

Electrochemical oxidation of epoxides in absence of nucleophiles, catalyses a rearrangement to the carbonyl compound. The electrolyte for this process is dichlo-romethane with tetrabutylammonium perchlorate. Reaction, illustrated in Scheme 8.7, involves the initial formation of a radical-cation, then rearrangement to the ketone radical-cation, which oxidises a molecule of the substrate epoxide. The process is catalytic and requires only a small charge of electricity [73]. [Pg.275]

Cyclohexanones are readily reduced to the hydrocarbon in a sulphuric acid electrolyte. Reduction of ketosteroids in dioxan - aqueous sulphuric acid at a lead cathode in a divided cell is a convenient process for converting the carbonyl group to methylene [84,85] and affords as good yields as the alternative non-electrocheniical processes. Menthone is reduced to the hydrocarbon under mild conditions at a mercury cathode when the electrolyte is either magnesium chloride or zinc perchlorate in ethanol [86]. [Pg.344]

When sample components having ionizable groups are chromatographed the use of a background electrolyte and control of the eluent pH with an m>propridte buffer are mandatory. It is advisable to maintain a fairly high concentration of buffer in the medium in order to rapidly reestablish protonic equilibria and to thereby avoid peak sjditting or asymmetrical peaks due to slow kinetic processes. Acetic acid, phosphoric acid, and perchloric acid and their salts have been used for the control of pH. [Pg.97]

The electrochemical rate constants of the Zn(II)/Zn(Hg) system obtained in propylene carbonate (PC), acetonitrile (AN), and HMPA with different concentrations of tetraethylammonium perchlorate (TEAP) decreased with increasing concentration of the electrolyte and were always lower in AN than in PC solution [72]. The mechanism of Zn(II) electroreduction was proposed in PC and AN the electroreduction process proceeds in one step. In HMPA, the Zn(II) electroreduction on the mercury electrode is very slow and proceeds according to the mechanism in which a chemical reaction was followed by charge transfer in two steps (CEE). The linear dependence of logarithm of heterogeneous standard rate constant on solvent DN was observed only for values corrected for the double-layer effect. [Pg.734]

Anion radicals can also be produced electrolytically at a cathode. There are many advantages to this technique. Perhaps the most important is that the potential may be adjusted so that only the desired one-electron reduction process occurs. The rate of reduction can also be conveniently measured by electrolysis. The electrolyte employed must not be more easily reduced or oxidized than the compound under study. It must be unreactive toward all the species generated in the system and it must allow passage of current in aprotic, relatively nonpolar media. In acetonitrile or A.A-dimethylformamide, tetraalkylammonium perchlorates fill this role reasonably well.25 They are less satisfactory in ether solvents. [Pg.431]

By media variables we mean the solvent, electrolyte, and electrodes employed in electrochemical generation of excited states. The roles which these play in the emissive process have not been sufficiently investigated. The combination of A vV-dimethylformamide, or acetonitrile, tetra-n-butylammonium perchlorate and platinum have been most commonly reported because they have been found empirically to function well. Despite various inadequacies of these systems, however, relatively little has been done to find and develop improved conditions under which emission could be seen and studied. Electrochemiluminescence emission has also been observed in dimethyl sulfite, propylene carbonate, 1,2-dimethoxyethane, trimethylacetonitrile, and benzonitrile.17 Recently the last of these has proven very useful for stabilizing the rubrene cation radical.65,66 Other electrolytes that have been tried are tetraethylam-monium bromide and perchlorate1 and tetra-n-butylammonium bromide and iodide.5 Emission has also been observed with gold,4 mercury,5 and transparent tin oxide electrodes,9 but few studies have yet been made1 as to the effects of electrode construction and orientation on the emission character. [Pg.438]


See other pages where Perchlorates electrolytic processes is mentioned: [Pg.42]    [Pg.278]    [Pg.384]    [Pg.395]    [Pg.899]    [Pg.278]    [Pg.384]    [Pg.395]    [Pg.80]    [Pg.172]    [Pg.198]    [Pg.205]    [Pg.213]    [Pg.144]    [Pg.580]    [Pg.274]    [Pg.274]    [Pg.16]    [Pg.67]    [Pg.867]    [Pg.499]    [Pg.18]    [Pg.46]    [Pg.9]    [Pg.254]    [Pg.280]    [Pg.285]    [Pg.33]    [Pg.246]    [Pg.36]    [Pg.227]    [Pg.152]    [Pg.774]    [Pg.432]    [Pg.435]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Electrolytes perchlorate

Electrolytic process

© 2024 chempedia.info