Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptides hydrolysis, cobalt -promoted

Sutton, P. A., and D. A. Buckingham, Cobalt(III)-promoted hydrolysis of amino acid esters and peptides and the synthesis of small peptides , Acc. Chem. Res., 20, 357-364 (1987). [Pg.1248]

Coordinated a-amino amides can be formed by the nucleophilic addition of amines to coordinated a-amino esters (see Chapter 7.4). This reaction forms the basis of attempts to use suitable metal coordination to promote peptide synthesis. Again, studies have been carried out using coordination of several metals and an interesting early example is amide formation on an amino acid imine complex of magnesium (equation 75).355 However, cobalt(III) complexes, because of their high kinetic stability, have received most serious investigation. These studies have been closely associated with those previously described for the hydrolysis of esters, amides and peptides. Whereas hydrolysis is observed when reactions are carried out in water, reactions in dimethyl-formamide or dimethyl sulfoxide result in peptide bond formation. These comparative results are illustrated in Scheme 91.356-358 The key intermediate (126) has also been reacted with dipeptide... [Pg.214]

The copper(II)-promoted hydrolysis of glycylglycine has been studied in some detail.120 Copper(II) ions catalyze the hydrolysis of glycylglycine in the pH range 3.5 to 6 at 85 °C.120 The pH rate profile has a maximum at pH 4.2, consistent with the view that the catalytically active species in the reaction is the carbonyl-bonded complex. The decrease in rate at higher pH is associated with the formation of a catalytically inactive complex produced by ionization of the peptide hydrogen atom. This view has subsequently been confirmed by other workers,121 in conjunction with an IR investigation of the structures of the copper(II) and zinc(II) complexes in D20 solution.122 Catalysis by cobalt(II),123 and zinc(II), nickel(II) and manganese(II) has also been studied.124-126... [Pg.425]

The above studies indicate that metal ions catalyze the hydrolysis of amides and peptides at pH values where the carbonyl-bonded species (25) is present. At higher pH values where deprotonated complexes (26) can be formed the hydrolysis is inhibited. These conclusions have been amply confirmed in subsequent studies involving inert cobalt(III) complexes (Section 61.4.2.2.2). Zinc(II)-promoted amide ionization is uncommon, and the first example of such a reaction was only reported in 1981.103 Zinc(II) does not inhibit the hydrolysis of glycylglycine at high pH, and amide deprotonation does not appear to occur at quite high pH values. Presumably this is one important reason for the widespread occurrence of zinc(Il) in metallopeptidases. Other metal ions such as copper(II) would induce amide deprotonation at relatively low pH values leading to catalytically inactive complexes. [Pg.426]

The use of kinetically inert cobalt(III) complexes has led to important developments in our understanding of the metal ion-promoted hydrolysis of esters, amides and peptides. These complexes have been particularly useful in helping to define the mechanistic pathways available in reactions of this type. Work in this area has been the subject of a number of reviews.21-24 Although most of the initial work was connected with cobalt(III), investigations are now being extended to other kinetically inert metal centres such as Rhin, lrni and Ru111. [Pg.427]

Co(in) complexes promote similar reactions. When four of the six octahedral positions are occupied by amine ligands and two cis positions are available for further reactions, it is possible to study not only the hydrolysis itself, but the steric preferences of the complexes. In general, these compounds catalyze the hydrolysis of N-terminal amino acids from peptides, and the amino acid that is removed remains as part of the complex. The reactions apparently proceed by coordination of the free amine to cobalt, followed either by coordination of the carbonyl to cobalt and subsequent reaction with OH or H2O from the solution (path A in Figure 12-15) or reaction of the carbonyl carbon with coordinated hydroxide (path B). As a result, the N-terminal amino acid is removed from the peptide and left as part of the cobalt complex in which the a-amino nitrogen and the carbonyl oxygen are bonded to the cobalt. Esters and amides are also hydrolyzed by the same mechanism, with the relative importance of the two pathways dependent on the specific compoimds used. [Pg.447]

The cobalt(III)-promoted hydrolysis of amino acid esters and peptides and the application of cobalt(III) complexes to the synthesis of small peptides has been reviewed. The ability of a metal ion to cooperate with various inter- and intramolecular acids and bases and promote amide hydrolysis has been investigated. The cobalt complexes (5-10) were prepared as potential substrates for amide hydrolysis. Phenolic and carboxylic functional groups were placed within the vicinity of cobalt(III) chelated amides, to provide models for zinc-containing peptidases such as carboxypeplidase A. The incorporation of a phenol group as in (5) and (6) enhanced the rate of base hydrolysis of the amide function by a factor of 10 -fold above that due to the metal alone. Intramolecular catalysis by the carboxyl group in the complexes (5) and (8) was not observed. The results are interpreted in terms of a bifunctional mechanism for tetrahedral intermediate breakdown by phenol. [Pg.309]

The use of kinetically inert cobalt(lll) complexes has led to very significant developments in our understanding of metal-ion-promoted hydrolysis of esters amides and peptides. Extensive reviews on the topic are available [1,2,24-26]. [Pg.152]


See other pages where Peptides hydrolysis, cobalt -promoted is mentioned: [Pg.440]    [Pg.284]    [Pg.455]   


SEARCH



Peptides hydrolysis

© 2024 chempedia.info