Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptide amino acid residues

Proteins consist of large numbers of amino-acids joined by the p>eptide link —CO —NH — into chains, as shown in the diagram, where R and R" are amino-acid residues. These chains are called peptides and may be broken into smaller chains by partial hydrolysis (see peptides). Proteins may contain more than one peptide chain thus insulin consists of... [Pg.332]

Short chains of amino acid residues are known as di-, tri-, tetrapeptide, and so on, but as the number of residues increases the general names oligopeptide and polypeptide are used. When the number of chains grow to hundreds, the name protein is used. There is no definite point at which the name polypeptide is dropped for protein. Twenty common amino acids appear regularly in peptides and proteins of all species. Each has a distinctive side chain (R in Figure 45.3) varying in size, charge, and chemical reactivity. [Pg.331]

An alternative approach to peptide sequencing uses a dry method in which the whole sequence is obtained from a mass spectrum, thereby obviating the need for multiple reactions. Mass spec-trometrically, a chain of amino acids breaks down predominantly through cleavage of the amide bonds, similar to the result of chemical hydrolysis. From the mass spectrum, identification of the molecular ion, which gives the total molecular mass, followed by examination of the spectrum for characteristic fragment ions representing successive amino acid residues allows the sequence to be read off in the most favorable cases. [Pg.333]

Fig. 1. Schematic drawing of precursors for selected brain oligopeptides. Shaded areas represent the location of sequences of active peptide products which are normally cleaved by trypsin-like enzymes acting on double-basic amino acid residues. Precursors are not necessarily drawn to scale, (a) CRF precursor (b) proopiomelanocortin (POMC) (c) P-protachykinin (d) proenkephalin A (e) CGRP precursor (f) preprodynorphin, ie, preproenkephalin B. Terms are... Fig. 1. Schematic drawing of precursors for selected brain oligopeptides. Shaded areas represent the location of sequences of active peptide products which are normally cleaved by trypsin-like enzymes acting on double-basic amino acid residues. Precursors are not necessarily drawn to scale, (a) CRF precursor (b) proopiomelanocortin (POMC) (c) P-protachykinin (d) proenkephalin A (e) CGRP precursor (f) preprodynorphin, ie, preproenkephalin B. Terms are...
Biosynthesis. Two closely related genes encode the three mammalian tachykinins. The preprotachykinin A gene encodes both substance P and substance K, while the preprotachykinin B gene encodes neuromedin K (45—47). The active sequences are flanked by the usual double-basic amino acid residues, and the carboxy-terrninal amino acid is a glycine residue which is decarboxylated to an amide. As with most neuropeptide precursors, intermediates in peptide processing can be detected, but their biological activities are not clear (ca 1994). [Pg.202]

CGRP has a wide distribution in the nervous system (19) and was the first peptide to be localized to motoneurons (124). It is also found in primary sensory neurons where it is colocalized with substance P (125). CGRP is derived from a precursor stmcturaHy related to the calcitonin precursor. The latter precursor produces two products, calcitonin itself and katacalcin, while the CGRP precursor produces one copy of CGRP (123). Like other peptides, CGRP is cleaved from its precursor by tryptic breakdown between double basic amino acid residues. [Pg.204]

Polypeptide Synthesis and Analysis. Sihca or controUed-pore glass supports treated with (chloromethyl)phenylethyltrimethoxysilane [68128-25-6] or its derivatives are replacing chloromethylated styrene—divinylbenzene (Merrifield resin) as supports in polypeptide synthesis. The sdylated support reacts with the triethyl ammonium salt of a protected amino acid. Once the initial amino acid residue has been coupled to the support, a variety of peptide synthesis methods can be used (34). At the completion of synthesis, the anchored peptide is separated from the support with hydrogen bromide in acetic acid (see Protein engineering Proteins). [Pg.73]

Properties and Structure. a -Acid glycoprotein (a -AGP) has a molecular mass of about 41,000 and consists of a peptide chain having 181 amino acid residues and five carbohydrate units (14,15). Two cystine disulfide cross-linkages connect residues 5 and 147 and residues 72 and 164. The carbohydrate units comprise 45% of the molecule and contain siaUc acid, hexosamine, and neutral hexoses. In phosphate buffer the isoelectric point of the... [Pg.98]

Polypeptides. These are a string of a-amino acids usually with the natural 5(L) [L-cysteine is an exception and has the R absolute configuration] or sometimes "unnatural" 7f(D) configuration at the a-carbon atom. They generally have less than -100 amino acid residues. They can be naturally occurring or, because of their small size, can be synthesised chemically from the desired amino acids. Their properties can be very similar to those of small proteins. Many are commercially available, can be custom made commercially or locally with a peptide synthesiser. They are purified by HPLC and can be used without further purification. Their purity can be checked as described under proteins. [Pg.560]

Carboxypeptidases are zinc-containing enzymes that catalyze the hydrolysis of polypeptides at the C-terminal peptide bond. The bovine enzyme form A is a monomeric protein comprising 307 amino acid residues. The structure was determined in the laboratory of William Lipscomb, Harvard University, in 1970 and later refined to 1.5 A resolution. Biochemical and x-ray studies have shown that the zinc atom is essential for catalysis by binding to the carbonyl oxygen of the substrate. This binding weakens the C =0 bond by... [Pg.60]

FIGURE 8.13 SEC of casein hydrolyzates. Numbers above the peaks refer to the number of amino acid residues in the typical peptide in the indicated fraction. Column PolyHEA, 200 X 9.4 mm 5 /zm, 200 A. Flow rate 0.5 ml/min. Mobile phase 50 mtA Formic acid. Detection A250. Samples (A) Pancreatin hydrolyzate and (B) tryptic hydrolyzate. (Adapted from Ref. 29 with permission from Silvestre et of. Copyright 1994, American Chemical Society.)... [Pg.264]

FIGURE 27.15 Peptide synthesis by the solid-phase method. Amino acid residues are attached sequentially beginning at the C terminus. [Pg.1143]

What are the products of each of the following reactions Your answer should account for all the amino acid residues in the starting peptides. [Pg.1153]

This reaction forms the basis of one method of terminal residue analysis. A peptide is treated with excess hydrazine in order to cleave all the peptide linkages. One of the terminal amino acids is cleaved as the free amino acid and identified all the other amino acid residues are converted to acylhydrazides. Which amino acid is identified by hydrazinolysis, the N terminus or the C terminus ... [Pg.1154]

Amino acid residues (Section 27.7) Individual amino acid components of a peptide or protein. [Pg.1276]

Peptide is the name assigned to short polymers of amino acids. Peptides are classified by the number of amino acid units in the chain. Each unit is called an amino acid residue, the word residue denoting what is left after the release of HgO when an amino acid forms a peptide link upon joining the peptide chain. Dipeptides have two amino acid residues, tripeptides have three, tetrapeptides four, and so on. After about 12 residues, this terminology becomes cumbersome, so peptide chains of more than 12 and less than about 20 amino acid residues are usually referred to as oligopeptides, and, when the chain exceeds several dozen amino acids in length, the term polypeptide is used. The distinctions in this terminology are not precise. [Pg.110]

FIGURE 5.5 (a) The hydroxy amino acids serine and threonine are slowly destroyed during the course of protein hydrolysis for amino acid composition analysis. Extrapolation of the data back to time zero allows an accurate estimation of the amonnt of these amino acids originally present in the protein sample, (b) Peptide bonds involving hydrophobic amino acid residues snch as valine and isolencine resist hydrolysis by HCl. With time, these amino acids are released and their free concentrations approach a limiting value that can be approximated with reliability. [Pg.112]

FIGURE 5.19 N-Tertninal analysis using Edman s reagent, phenylisothiocyanate. Phenylisothiocyanate combines with the N-terminus of a peptide under mildly alkaline conditions to form a phenylthiocarbamoyl substitution. Upon treatment with TFA (trifluo-roacetic acid), this cyclizes to release the N-terminal amino acid residue as a thiazolinone derivative, but the other peptide bonds are not hydrolyzed. Organic extraction and treatment with aqueous acid yield the N-terminal amino acid as a phenylthiohydantoin (PTH) derivative. [Pg.133]

ENZYMATIC ANALYSIS WITH CARBOXYPEPTIDASES. Carboxypeptidases are enzymes that cleave amino acid residues from the C-termini of polypeptides in a successive fashion. Four carboxypeptidases are in general use A, B, C, and Y. Carboxypeptidase A (from bovine pancreas) works well in hydrolyzing the C-terminal peptide bond of all residues except proline, arginine, and lysine. The analogous enzyme from hog pancreas, carboxypeptidase B, is effective only when Arg or Lys are the C-terminal residues. Thus, a mixture of carboxypeptidases A and B liberates any C-terminal amino acid except proline. Carboxypeptidase C from citrus leaves and carboxypeptidase Y from yeast act on any C-terminal residue. Because the nature of the amino acid residue at the end often determines the rate at which it is cleaved and because these enzymes remove residues successively, care must be taken in interpreting results. Carboxypeptidase Y cleavage has been adapted to an automated protocol analogous to that used in Edman sequenators. [Pg.134]


See other pages where Peptide amino acid residues is mentioned: [Pg.170]    [Pg.332]    [Pg.343]    [Pg.529]    [Pg.239]    [Pg.288]    [Pg.290]    [Pg.330]    [Pg.332]    [Pg.191]    [Pg.201]    [Pg.447]    [Pg.239]    [Pg.209]    [Pg.485]    [Pg.155]    [Pg.179]    [Pg.208]    [Pg.280]    [Pg.73]    [Pg.562]    [Pg.109]    [Pg.176]    [Pg.287]    [Pg.391]    [Pg.249]    [Pg.1131]    [Pg.1142]    [Pg.140]    [Pg.140]    [Pg.160]   
See also in sourсe #XX -- [ Pg.149 , Pg.173 ]

See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Acidic residues

Amino Acid Residues and Peptide Bonds

Amino acid residues

Amino acids residues of a peptide

Amino acids, peptides

Amino residues

Peptides acids

Peptides amino acid terminal residue

© 2024 chempedia.info