Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peltier battery

There yawns a large gap between commercial (micro)calorimeters with maximum vessel volumes of 25, 30 or 100 mL and instruments of many litres for smaller domestic animals. The only exception known to the authors is the Seta-ram GF 108 1-L instrument used in the Leyden group [72]. A low-price solution for an intermediate size calorimeter was found in cooling/warming boxes sold as picnic equipment for less than US 200 [73], They are equipped with a Peltier battery as a heat pump between the inner volume of the box and the environment. In the same way the heat pump can work as a Seebeck heat flow sensor to determine heat production rates inside the box. The inner walls of the box may be additionally covered by copper foil of high thermal conductivity to facilitate heat flow to the sensor. [Pg.421]

Figure 2.3 depicts an apparatus at constant uniform temperature. The battery drives an electrical current around the circuit. Heat is absorbed at one A/B junction and emitted at the other. Explain this phenomenon, known as the Peltier effect, in terms of relevant forces and fluxes. [Pg.38]

Electrochemical calorimetry — is the application of calorimetry to thermally characterize electrochemical systems. It includes several methods to investigate, for instances, thermal effects in batteries and to determine the -> molar electrochemical Peltier heat. Instrumentation for electrochemical calorimetric studies includes a calorimeter to establish the relationship between the amount of heat released or absorbed with other electrochemical variables, while an electrochemical reaction is taking place. Electrochemical calorimeters are usually tailor-made for a specific electrochemical system and must be well suited for a wide range of operation temperatures and the evaluation of the heat generation rate of the process. Electrochemical calorimeter components include a power supply, a device to control charge and discharge processes, ammeter and voltmeter to measure the current and voltage, as well as a computerized data acquisition system [i]. In situ calorimetry also has been developed for voltammetry of immobilized particles [ii,iii]. [Pg.186]

On the other hand, for slow reactions, adiabatic and isothermal calorimeters are used and in the case of very small heat effects, heat-flow micro-calorimeters are suitable. Heat effects of thermodynamic processes lower than 1J are advantageously measured by the micro-calorimeter proposed by Tian (1923) or its modifications. For temperature measurement of the calorimetric vessel and the cover, thermoelectric batteries of thermocouples are used. At exothermic processes, the electromotive force of one battery is proportional to the heat flow between the vessel and the cover. The second battery enables us to compensate the heat evolved in the calorimetric vessel using the Peltier s effect. The endothermic heat effect is compensated using Joule heat. Calvet and Prat (1955, 1958) then improved the Tian s calorimeter, introducing the differential method of measurement using two calorimetric cells, which enabled direct determination of the reaction heat. [Pg.236]

The use of Peltier elements for cooling of batteries is also possible. Koppenhoefer [35] deseribes field tests with and without active cooling with Peltier elements. Such a system for the case of a fibre-eable distribution shelter is shown in Fig. 8.28. [Pg.235]

Thermoelectric materials used for refrigeration utilise the Peltier effect. Two thermoelectric materials are coupled by metal plates, which act as the junctions. A current passed through the circuit in one direction will heat one plate and cool the other. For refrigeration to occur, the temperature of the hot junction is maintained constant by connection to a heat sink, which may simply be a fan. Continuous cooling will occur at the cold junction. These are widely used in food and drinks coolers powered by a car battery. [Pg.487]


See other pages where Peltier battery is mentioned: [Pg.290]    [Pg.423]    [Pg.290]    [Pg.423]    [Pg.450]    [Pg.1609]    [Pg.358]    [Pg.46]    [Pg.1232]    [Pg.441]    [Pg.443]    [Pg.2069]    [Pg.336]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



Peltier

© 2024 chempedia.info