Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PDMS, property

This behavior is in between that of a liquid and a solid. As an example, PDMS properties obey an Arrhenius-type temperature dependence because PDMS is far above its glass transition temperature (about — 125°C). The temperature shift factors are... [Pg.213]

The nature of the bonding in siloxane molecules has been of longstanding interest. Force fields for calculations of PDMS properties have been revised over the years and are now at an advanced state of develop-ment. Some of the simplest approaches employ the methods of molecular mechanics. Most of the experimental results have been obtained on solutions of polysiloxanes in thermodynamically good solvents. ... [Pg.81]

Many of the unique properties of siUcone oils are associated with the surface effects of dimethylsiloxanes, eg, imparting water repeUency to fabrics, antifoaming agents, release liners for adhesive labels, and a variety of poHshes and waxes (343). Dimethylsilicone oils can spread onto many soHd and Hquid surfaces to form films of molecular dimensions (344,345). This phenomenon is greatly affected by even small changes in the chemical stmcture of siloxane in the siloxane polymer. Increasing the size of the alkyl substituent from methyl to ethyl dramatically reduces the film-forming abiUty of the polymer (346). The phenyl-substituted siUcones are spread onto water or soHd surfaces more slowly than PDMS (347). [Pg.52]

Sihcone oils are good hydrodynamic lubricants but have generally poor frictional lubricating properties (352—354). The latter can be improved by incorporating chlorophenyl groups into the polymer side chains (355). For steel on steel, the coefficient of friction is about 0.3—0.5. The load-bearing capacity of PDMS (Almen-Wieland machine) is only 50—150 kg, compared with - 1000 kg for polychlorophenyLmethylsiloxane and up to 2000 kg for mineral oil. [Pg.52]

It has been shown (16) that a stable foam possesses both a high surface dilatational viscosity and elasticity. In principle, defoamers should reduce these properties. Ideally a spread duplex film, one thick enough to have two definite surfaces enclosing a bulk phase, should eliminate dilatational effects because the surface tension of an iasoluble, one-component layer does not depend on its thickness. This effect has been verified (17). SiUcone antifoams reduce both the surface dilatational elasticity and viscosity of cmde oils as iUustrated ia Table 2 (17). The PDMS materials are Dow Coming Ltd. polydimethylsiloxane fluids, SK 3556 is a Th. Goldschmidt Ltd. siUcone oil, and FC 740 is a 3M Co. Ltd. fluorocarbon profoaming surfactant. [Pg.464]

Silicone acrylates (Fig. 5) are again lower molecular weight base polymers that contain multiple functional groups. As in epoxy systems, the ratio of PDMS to functional material governs properties of release, anchorage, transfer, cure speed, etc. Radiation induced radical cure can be initiated with either exposure of photo initiators and sensitizers to UV light [22,46,71 ] or by electron beam irradiation of the sample. [Pg.546]

As another consequence of the properties of the siloxane bond, the value of n in the common linear trimethylsiloxy-endblocked-PDMS, (M-D -M) can vary from zero to tens of thousands giving a range of viscosity from 0.65 to 2,500,000 centipoise to the polymeric material. This relationship between viscosity and polymer chain length allows PDMS polymers to vary in form from water-like fluids to a flowable gum, while retaining the same chemical character. [Pg.681]

A chemical property of silicones is the possibility of building reactivity on the polymer [1,32,33]. This allows the building of cured silicone networks of controlled molecular architectures with specific adhesion properties while maintaining the inherent physical properties of the PDMS chains. The combination of the unique bulk characteristics of the silicone networks, the surface properties of the PDMS segments, and the specificity and controllability of the reactive groups, produces unique materials useful as adhesives, protective encapsulants, coatings and sealants. [Pg.681]

Once cured, PDMS networks are essentially made of dimethylsiloxane polymeric chains crosslinked with organic linkages. The general and inherent molecular properties of the PDMS polymers are therefore conferred to the silicone network. Low surface energy and flexibility of siloxane segments are two inherent properties very useful in adhesion technology. [Pg.688]

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

In silicone adhesives used to bond structural glazing assemblies, the silicone network is made of very long PDMS chains and is filled with silica that improves the elastomeric properties of the adhesive. The strength of such an adhesive is strongly enhanced through various mechanisms of energy absorption. [Pg.694]

Plasticizer Trimethylsilyl-endblocked- PDMS Adjustment of mechanical properties such as hardness, viscoelasticity, rheology. [Pg.701]

Despite their many outstanding properties, polydimethylsiloxane (PDMS) rubbers require extremely high molecular weights to develop useful mechanical properties. [Pg.6]

Synthesis of siloxane-urethane copolymers from various hydroxyalkyl-terminated PDMS oligomers and aliphatic diisocyanates, such as tetramethylene- and hexame-thylene diisocyanate and HMDI was reported 333,334). Reactions were conducted either in chloroform or 1,4-dioxane and usually low molecular weight, oily products were obtained. No data were available on the molecular weights or the thermal and mechanical properties of the copolymers obtained. These products were later cross-linked by a peroxide. Resulting materials were characterized by IR spectroscopy and water contact angle measurements for possible use as contact lenses. [Pg.41]

The interest in this type of copolymers is still very strong due to their large volume applications as emulsifiers and stabilizers in many different systems 43,260,261). However, little is known about the structure-property relationships of these systems 262) and the specific interactions of different segments in these copolymers with other components in a particular multicomponent system. Sometimes, minor chemical modifications in the PDMS-PEO copolymer backbone structures can lead to dramatic changes in its properties, e.g. from a foam stabilizer to an antifoam. Therefore, recent studies are usually directed towards the modification of polymer structures and block lengths in order to optimize the overall structure-property-performance characteristics of these systems 262). [Pg.46]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]


See other pages where PDMS, property is mentioned: [Pg.220]    [Pg.220]    [Pg.328]    [Pg.328]    [Pg.329]    [Pg.330]    [Pg.50]    [Pg.52]    [Pg.53]    [Pg.57]    [Pg.57]    [Pg.57]    [Pg.58]    [Pg.58]    [Pg.102]    [Pg.680]    [Pg.681]    [Pg.682]    [Pg.684]    [Pg.694]    [Pg.699]    [Pg.484]    [Pg.7]    [Pg.7]    [Pg.32]    [Pg.32]    [Pg.40]    [Pg.49]    [Pg.54]    [Pg.57]    [Pg.60]    [Pg.60]    [Pg.63]    [Pg.64]    [Pg.64]   


SEARCH



PDMS

PDMS, property mechanical

Some Additional Unusual Properties of PDMS

© 2024 chempedia.info