Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle electrostatic interaction

M. Semmler, J. Rieka and M. Borkovec. Diffiisional deposition of colloidal particles electrostatic interaction and size polydispersity effects. Colloids and Surfaces a-Pkysicochemical and Engineering Aspects 165 (1-3), 79-93 (2000). [Pg.379]

Protein adsorption has been studied with a variety of techniques such as ellipsome-try [107,108], ESCA [109], surface forces measurements [102], total internal reflection fluorescence (TIRE) [103,110], electron microscopy [111], and electrokinetic measurement of latex particles [112,113] and capillaries [114], The TIRE technique has recently been adapted to observe surface diffusion [106] and orientation [IIS] in adsorbed layers. These experiments point toward the significant influence of the protein-surface interaction on the adsorption characteristics [105,108,110]. A very important interaction is due to the hydrophobic interaction between parts of the protein and polymeric surfaces [18], although often electrostatic interactions are also influential [ 116]. Protein desorption can be affected by altering the pH [117] or by the introduction of a complexing agent [118]. [Pg.404]

The atomic scattering factor for electrons is somewhat more complicated. It is again a Fourier transfonn of a density of scattering matter, but, because the electron is a charged particle, it interacts with the nucleus as well as with the electron cloud. Thus p(r) in equation (B1.8.2h) is replaced by (p(r), the electrostatic potential of an electron situated at radius r from the nucleus. Under a range of conditions the electron scattering factor, y (0, can be represented in temis... [Pg.1363]

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. The smooth particle mesh ewald method. J. Chem. Phys., 103 8577, 1995. Brock A. Luty, Ilario G. Tironi, and Wilfried F. van Gunsteren. Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys., 103 3014-3021, 1995. [Pg.96]

Brock A. Luty and Wilfried F. van Gunsteren. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions. J. Phys. Chem., 100 2581-2587, 1996. [Pg.96]

In periodic boimdary conditions, one possible way to avoid truncation of electrostatic interaction is to apply the so-called Particle Mesh Ewald (PME) method, which follows the Ewald summation method of calculating the electrostatic energy for a number of charges [27]. It was first devised by Ewald in 1921 to study the energetics of ionic crystals [28]. PME has been widely used for highly polar or charged systems. York and Darden applied the PME method already in 1994 to simulate a crystal of the bovine pancreatic trypsin inhibitor (BPTI) by molecular dynamics [29]. [Pg.369]

Luty B A, M E David, I G Tironi and W F van Gunsteren 1994. A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods for Calculating Electrostatics Interactions in Periodic Molecular Systems. Molecular Simulation 14 11-20. [Pg.365]

Electrostatic Interaction. Similarly charged particles repel one another. The charges on a particle surface may be due to hydrolysis of surface groups or adsorption of ions from solution. The surface charge density can be converted to an effective surface potential, /, when the potential is <30 mV, using the foUowing equation, where -Np represents the Faraday constant and Ai the gas law constant. [Pg.544]

The size of particles removed by such filters is less than the size of the passages. The mechanism of removal includes adsorption (qv) of the impurities at the interface between the media and the water either by specific chemical or van der Waals attractions or by electrostatic interaction when the medium particles have surface charges opposite to those on the impurities to be removed. [Pg.276]

In such a case we say that there is no correlation between the particles. This would certainly be the case if there were no electrostatic interaction between electrons, but it also holds for the electrons in Hartree s original SCF model. This is because each electron experiences an average potential due to the remaining electrons and the nuclei. Electrons repel each other, and we would certainly expect the probability of finding two of them close together would be reduced compared to the value expected for independent particles. [Pg.186]

One area where the concept of atomic charges is deeply rooted is force field methods (Chapter 2). A significant part of the non-bonded interaction between polar molecules is described in terms of electrostatic interactions between fragments having an internal asymmetry in the electron distribution. The fundamental interaction is between the Electrostatic Potential (ESP) generated by one molecule (or fraction of) and the charged particles of another. The electrostatic potential at position r is given as a sum of contributions from the nuclei and the electronic wave function. [Pg.220]

The simplest shape for the cavity is a sphere or possibly an ellipsoid. This has the advantage that the electrostatic interaction between M and the dielectric medium may be calculated analytically. More realistic models employ moleculai shaped cavities, generated for example by interlocking spheres located on each nuclei. Taking the atomic radius as a suitable factor (typical value is 1.2) times a van der Waals radius defines a van der Waals surface. Such a surface may have small pockets where no solvent molecules can enter, and a more appropriate descriptor may be defined as the surface traced out by a spherical particle of a given radius rolling on the van der Waals surface. This is denoted the Solvent Accessible Surface (SAS) and illustrated in Figm e 16.7. [Pg.393]

In pressing, the threshold concentration of the filler amounts to about 0.5% of volume. The resulting distribution of the filler corresponds, apparently, to the model of mixing of spherical particles of the polymer (with radius Rp) and filler (with radius Rm) for Rp > Rm as the size of carbon black particles is usually about 1000 A [19]. During this mixing, the filler, because of electrostatical interaction, is distributed mainly on the surface of polymer particles which facilitates the forming of conducting chains and entails low values of the percolation threshold. [Pg.132]

At the potential beyond the critical pitting potential, the passive metal electrode system turns unstable. As mentioned before, the asymmetrical fluctuations arise from the electrostatic interaction between the electrode surface and solution particles in the double layer, so that the pitting current develops rapidly, and pits grow simultaneously. [Pg.266]

The structures of phases such as the chiral nematic, the blue phases and the twist grain boundary phases are known to result from the presence of chiral interactions between the constituent molecules [3]. It should be possible, therefore, to explore the properties of such phases with computer simulations by introducing chirality into the pair potential and this can be achieved in two quite different ways. In one a point chiral interaction is added to the Gay-Berne potential in essentially the same manner as electrostatic interactions have been included (see Sect. 7). In the other, quite different approach a chiral molecule is created by linking together two or more Gay-Berne particles as in the formation of biaxial molecules (see Sect. 10). Here we shall consider the phases formed by chiral Gay-Berne systems produced using both strategies. [Pg.110]

In view of the importance of the particle/bubble contact, it may be assumed that the stress acting on the particles during gas sparging is determined by electrostatic interactions as well as by hydrophobic and hydrophilic interactions, which are determined by the nature of the liquid/solid system. The use of Pluronic as additive leads to the reduction of destruction process [44,47] possibly due to less bubble/floc contact which is also described by Meier et. al. [67]. [Pg.64]

Vakarelski et al. [88] also investigated the adhesive forces between a colloid particle and a flat surface in solution. In their case they investigated a sihca sphere and a mica surface in chloride solutions of monovalent cations CsCl, KCl, NaCl, and LiCl. The pH was kept at 5.6 for all the experiments. To obtain the adhesive force in the presence of an electrostatic interaction, they summed the repulsive force and the pull-off force (coined foe by the authors ) to obtain a value for the adhesive force that is independent of the electrostatic component. [Pg.51]

In 1997, a Chinese research group [78] used the colloidal solution of 70-nm-sized carboxylated latex particles as a subphase and spread mixtures of cationic and other surfactants at the air-solution interface. If the pH was sufficiently low (1.5-3.0), the electrostatic interaction between the polar headgroups of the monolayer and the surface groups of the latex particles was strong enough to attract the latex to the surface. A fairly densely packed array of particles could be obtained if a 2 1 mixture of octadecylamine and stearic acid was spread at the interface. The particle films could be transferred onto solid substrates using the LB technique. The structure was studied using transmission electron microscopy. [Pg.217]

The stability of colloids can also be dramatically altered by inclusion of polymeric materials. If the polymer interacts favourably with the particle surfaces, i.e. it adsorbs, then both an increase and a reduction in stability is possible, via modification of the electrostatic interaction of the polymer is charged or a reduction in the van der Waals attraction. [Pg.104]


See other pages where Particle electrostatic interaction is mentioned: [Pg.456]    [Pg.320]    [Pg.130]    [Pg.456]    [Pg.320]    [Pg.130]    [Pg.182]    [Pg.2045]    [Pg.2675]    [Pg.2681]    [Pg.461]    [Pg.461]    [Pg.353]    [Pg.596]    [Pg.142]    [Pg.413]    [Pg.545]    [Pg.396]    [Pg.1810]    [Pg.91]    [Pg.93]    [Pg.147]    [Pg.188]    [Pg.443]    [Pg.469]    [Pg.176]    [Pg.391]    [Pg.387]    [Pg.944]    [Pg.252]    [Pg.94]    [Pg.452]    [Pg.508]    [Pg.509]    [Pg.1]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Electrostatic Interaction Between Soft Particles

Electrostatic interactions between colloidal particles

Electrostatic particles

Interaction electrostatic

Particle interaction

© 2024 chempedia.info