Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium telomerization

Keywords Biomass Butadiene Oxygenates Palladium Telomerization... [Pg.45]

The palladium-catalyzed hnear telomerization of 1,3-bntklienes provides a useful method for thepreparation of functionalized alkenes. A proposed catalytic cycle for the paliadinm-catalyzed... [Pg.138]

When the products are partially or totally miscible in the ionic phase, separation is much more complicated (Table 5.3-2, cases c-e). One advantageous option can be to perform the reaction in one single phase, thus avoiding diffusional limitation, and to separate the products in a further step by extraction. Such technology has already been demonstrated for aqueous biphasic systems. This is the case for the palladium-catalyzed telomerization of butadiene with water, developed by Kuraray, which uses a sulfolane/water mixture as the solvent [17]. The products are soluble in water, which is also the nucleophile. The high-boiling by-products are extracted with a solvent (such as hexane) that is immiscible in the polar phase. This method... [Pg.264]

Heald RA, Stevens MF (2003) Antitumour polycyclic acridines. Palladium(O) mediated syntheses of quino [4,3,2-kl] acridines bearing peripheral substituents as potential telomere maintenance inhibitors. Org Biomol Chem l(19) 3377-3389... [Pg.95]

From the beginning of the 1970s unhl the mid 1980s, several examples of the telomerization of dienes with water [76, 77] or methanol [78, 79] to isomeric mixtures of dienols or dienol ethers catalyzed by palladium-phosphine complexes in the presence of carbon dioxide have been reported. Neither the yield nor the selectivity were very high. However, when allene was employed as a diene , 3-methyl-2-meth-ylene-3-buten-l-ol was obtained with fairly good selectivity (up to 98%) (Eq. 6.43) [78]. [Pg.198]

Scheme 5.5. Catalytic cycle in the palladium-catalyzed telomerization of 1,3-butadiene... Scheme 5.5. Catalytic cycle in the palladium-catalyzed telomerization of 1,3-butadiene...
Extension to carbocyclization of butadiene telomerization using nitromethane as a trapping reagent is reported (Eq. 5.48).72 Palladium-catalyzed carbo-annulation of 1,3-dienes by aryl halides is also reported (Eq. 5.49).73 The nitro group is removed by radical denitration (see Section 7.2), or the nitroalkyl group is transformed into the carbonyl group via the Nef reaction (see Section 6.1). [Pg.139]

These telomerization reactions of butadiene with nucleophiles are also catalyzed by nickel complexes. For example, amines (18-23), active methylene compounds (23, 24), alcohols (25, 26), and phenol (27) react with butadiene. However, the selectivity and catalytic activity of nickel catalysts are lower than those of palladium catalysts. In addition, a mixture of monomeric and dimeric telomers is usually formed with nickel catalysts ... [Pg.146]

The most characteristic reaction of butadiene catalyzed by palladium catalysts is the dimerization with incorporation of various nucleophiles [Eq. (11)]. The main product of this telomerization reaction is the 8-substituted 1,6-octadiene, 17. Also, 3-substituted 1,7-octadiene, 18, is formed as a minor product. So far, the following nucleophiles are known to react with butadiene to form corresponding telomers water, carboxylic acids, primary and secondary alcohols, phenols, ammonia, primary and secondary amines, enamines, active methylene compounds activated by two electron-attracting groups, and nitroalkanes. Some of these nucleophiles are known to react oxidatively with simple olefins in the presence of Pd2+ salts. Carbon monoxide and hydrosilanes also take part in the telomerization. The telomerization reactions are surveyed based on the classification by the nucleophiles. [Pg.151]

Hydrosilanes react with butadiene by the catalysis of palladium compounds, but the nature of the reaction is somewhat different from that of the telomerization of other nucleophiles described before. Different products are obtained depending on both the structure of silanes and the reaction conditions. Trimethylsilane and other trialkylsilanes reacted with butadiene to give the 1 2 adduct, l-trialkylsilyl-2,6-octadienes (65), in high yield (98%) (62-64). Unlike other telomers which have the 1,6-octadienyl chain, the telomers of silanes have the 2,6-octadienyl chain. As catalysts, Pd(PPh3)2 (maleic anhydride), PdCl2(PhCN)2, PdCl2, and 7r-allylpalladium chloride were used. Methyldiethoxysilane behaved similarly to give the 1 2 adduct. [Pg.162]

To prepare more hydrophobic starches for specific applications, the partial substitution of starch with acetate, hydroxypropyl, alkylsiliconate or fatty-acid ester groups has been described in the literature. A new route, however, consists of grafting octadienyl chains by butadiene telomerization (Scheme 3.9) [79, 82, 83], The reaction was catalyzed by hydrosoluble palladium-catalytic systems prepared from palladium diacetate and trisodium tris(m-sulfonatophenyl)phosphine (TPPTS). [Pg.70]

Catalysis experiments were performed to investigate the telomerization of butadiene with ethylene glycol in selected TMS systems (e.g. si toluene DMF 1 5 4 or sl 2-octanol DMSO 1.35 3 5.2). With Pd/TPPTS as the catalyst a maximum yield of only 10% of the desired products could be achieved. With Pd/TPPMS the yield increased up to 43% in the TMS system si toluene isopropyl alcohol, but additional water had to be added to obtain a phase split after the reaction. The catalyst leaching is very high and 29% of the palladium used is lost to the product phase. [Pg.27]

The linear telomerization reaction of dienes was one of the very first processes catalyzed by water soluble phosphine complexes in aqueous media [7,8]. The reaction itself is the dimerization of a diene coupled with a simultaneous nucleophilic addition of HX (water, alcohols, amines, carboxylic acids, active methylene compounds, etc.) (Scheme 7.3). It is catalyzed by nickel- and palladium complexes of which palladium catalysts are substantially more active. In organic solutions [Pd(OAc)2] + PPhs gives the simplest catalyst combination and Ni/IPPTS and Pd/TPPTS were suggested for mnning the telomerizations in aqueous/organic biphasic systems [7]. An aqueous solvent would seem a straightforward choice for telomerization of dienes with water (the so-called hydrodimerization). In fact, the possibility of separation of the products and the catalyst without a need for distillation is a more important reason in this case, too. [Pg.194]

Solutions of the nickel(O) and palladium(O) complexes of 1,3,5-triaza-7-phosphaadamantane, PTA (82) and tris(hydroxymethyl)phosphine (98) in water catalyze the oligomerization and telomerization of 1,3-butadiene at 80 °C. Although high yields and good selectivities to octadienyl products (87 %) were obtained, the complexes (or the intermediate species formed in the reaction) dissolve sufficiently in the organic phase ofthe monomer and the products to cause substantial metal leaching [17],... [Pg.197]

The strong acidity of the proton at the C2 position of a [AMIM] ion has been well recognized 183). This cation can react with palladium complexes to form inactive l,3-dialkylimidazol-2-ylidene palladium complexes 200), as confirmed in a study of the conventional Pd(OAc)2/PPh3/base catalyst in ionic liquids for the telomerization of butadiene with methanol at 85°C 201). [Pg.202]

As compared to the esterification of sucrose, cataly tic etherification of sucrose provides another family of non-ionic surfactants that are much more robust than sucrose esters in the presence of water. Synthesis of sucroethers can be achieved according to two processes (1) the ring opening of epoxide in the presence of a basic catalyst and (2) the telomerization of butadiene with sucrose using a palladium-phosphine catalyst. [Pg.86]

Palladium-Catalyzed Telomerization of Butadiene with Polyols From Mono to Polysaccharides... [Pg.93]

Keywords Hydrophobic starch, Octadienyl ether, Palladium, Surfactant, Telomerization, Water catalyzed reaction... [Pg.93]

The telomerization of the lower reactive isoprene with glycerol was achieved in the presence of palladium-carbene complex but in a dioxane/PEG solvent [15]. Under such conditions, both glycerol and PEG are converted. After 24 h, in the presence of 0.06% [Pd(acac)2/IMes.Cl] (1/1.5) at 90°C, the telomerization of isoprene with glycerol (glycerol/PEG/dioxane/isoprene = 1/2.5/2.5/5) yields 70% of the linear monoether glycerol together with 29% of PEG telomer. [Pg.98]


See other pages where Palladium telomerization is mentioned: [Pg.108]    [Pg.108]    [Pg.225]    [Pg.6]    [Pg.147]    [Pg.161]    [Pg.168]    [Pg.196]    [Pg.95]    [Pg.108]   
See also in sourсe #XX -- [ Pg.6 , Pg.13 , Pg.18 ]




SEARCH



Palladium complex catalysis telomerization

Palladium-catalysed reactions telomerization

Telomeres

Telomerization

© 2024 chempedia.info