Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium ring compound, reaction with

Activation of two Si—Si bonds in bis(disilanyl)alkanes with palladium(O) bis(tert-alkyl isocyanide) induced the formation of the cyclic bis(silyl)palladium(II) bis(terf-alkyl isocyanide) complexes (100) and disilanes described schematically in Scheme 42. These complexes were found to react with phenylacetylene, affording different amounts of five-membered cyclic products and acyclic products which are derived from the insertion of the alkyne into the general intermediate complex 101 (Scheme 42, equation 54). The bis(silanyl)dithiane palladium complex (102) was isolated and characterized in the solid state the two silicon atoms, the two isocyano carbons and the palladium atom are nearly in a plane with a short cross-ring Si—Si distance of 2.613(2) A, suggesting the possibility of covalently bonded two Si—Si atoms in the four-membered ring. Similar reaction with cyclic disilanes afforded oligomers, and cyclic 20-membered compounds have been prepared in the presence of nitriles248,249. [Pg.2117]

The intramolecular Heck reaction presented in Scheme 8 is also interesting and worthy of comment. Rawal s potentially general strategy for the stereocontrolled synthesis of the Strychnos alkaloids is predicated on the palladium-mediated intramolecular Heck reaction. In a concise synthesis of ( )-dehydrotubifoline [( )-40],22 Rawal et al. accomplished the conversion of compound 36 to the natural product under the conditions of Jeffery.23 In this ring-forming reaction, the a-alkenylpalladium(n) complex formed in the initial oxidative addition step engages the proximate cyclohexene double bond in a Heck cyclization, affording enamine 39 after syn /2-hydride elimination. The latter substance is a participant in a tautomeric equilibrium with imine ( )-40, which happens to be shifted substantially in favor of ( )-40. [Pg.574]

The synthetic utility of the ring expansion reaction was demonstrated by its application to the synthesis of thermolabile thiepins. When the diazo compound (66) obtained from benzo[c]thiopyrylium salt 65 was treated with palladium catalyst under the same conditions as in the case of 63, the product isolated was ethyl 2-naphthoate (68)48). The plausible reaction pathway is one comprising i) decomposition of 66 to the corresponding carbene intermediate, ii) ring expansion to the... [Pg.48]

Another compound 9 with three heterocyclic rings linearly fused (5 5 5) with two heteroatoms has been prepared from 1,1 -carbonyl diindole 297 <2001T5199>. Palladium-mediated coupling of the 2- and 2 -positions of 297 afforded the 1,1 -carbonyl-2,2 -biindolyl 9. 1,1 -Carbonyl diindole 297 was in turn obtained in 41% yield from 1,1 -carbonyldiimidazole 296 by reaction with indole in DMSO at 125 °C. The palladium-catalyzed coupling step afforded the desired product 9 in low yield and required a stoichiometric amount of palladium acetate. Therefore, it was felt prohibitively expensive. Addition of various co-oxidants (Ac20, Mn02, and Cu(OAc)2, etc) to make the reaction catalytic in palladium did not result in any improvement of the yield of 18 (Scheme 53). [Pg.671]

The clinical and commercial success of the antidepressant compound fluoxetine (Chapter 2 Prozac) engendered considerable work in other laboratories. A benzo-dioxan based compound that shows similar activity shares only a few stmctural features with the prototype. The benzodioxan nucleus (68-3) is formed by an alkylation reaction between the fluorocatechol (68-1) and the derivative (68-2) from meso, and hence achiral, butanetetrol. The benzyl protecting groups are then removed by hydrogenation over palladium, and the thus-obtained diol is converted to the fiii-toluene-sulfonate (68-4) by reaction with toluenesulfonyl chloride. Treatment of that intermediate with benzylamine leads to fiw-alkylation on the same nitrogen to form a pyrrolidine ring and thus the tricyclic compound (68-5). A second hydrogenolysis step then leads to fluparoxan (68-6) [70]. [Pg.622]

Nickel(O) or palladium(II) compounds in stoichiometric amounts promote the ring enlargement of simple alkyl-substituted 1,2-divinylcyclobutanes in benzene at room temperature to give 1 1 metal complexes of cycloocta-1,5-dienes.119 Destruction of the palladium complexes with potassium cyanide affords the free cycloocta-1,5-dienes. The stereochemistry observed is the same as in the thermal reaction at 150°C. [Pg.581]

An extensive series of neutral macrocyclic complexes, mainly of nickel(II), copper(II), platinum(II) and palladium(II), has been developed by Dziomko and coworkers. The cyclization step in the template reaction is a nucleophilic aromatic substitution of an arylamine on to a haloaryl azo compound. A variety of aryl and heteroaryl rings can be incorporated in different combinations. For instance, a diaminoazo compound can be combined with a dihaloazo compound (Scheme 58).246 247 Another synthetic strategy involves the dimerization of an aminohaloazo compound and leads to more symmetrical macrocyclic complexes (Scheme 59).248 249 Most recently, dihalodiazo compounds have been synthesized from dihydrazines and pyrazolinediones and undergo template reactions with simple 1,2-diamines (Scheme 60).249 250... [Pg.196]

The reaction of methylenecyclopropanes with transition metal complexes is well known to promote a catalytic a-ir cycloaddition reaction with unsaturated compounds, in which a trimethylenemethane complex might exist71-76. Recently, much interest has been focused on the interaction of strained silicon-carbon bonds with transition metal complexes. In particular, the reaction of siliranes with acetylene in the presence of transition metal catalysts was extensively investigated by Seyferth s and Ishikawa s groups77-79. In the course of our studies on alkylidenesilirane, we found that palladium catalyzed reaction of Z-79 and E-79 with unsaturated compounds displayed ring expansion reaction modes that depend on the (Z) and (E) regiochemistry of 79 as well as the... [Pg.2424]

Inter-ring metal migrations, dynamic NMR studies, 1, 412 Intracyclic germanium-carbon bond formation large rings, 3, 706 small rings, 3, 703 Intramolecular Alder-ene reactions with metals, 10, 576 with palladium, 10, 568 with rhodium, 10, 575 with ruthenium, 10, 572 with transition metal catalysts, 10, 568 Intramolecular allylations, in cyclizations, with indium compounds, 9, 679... [Pg.128]


See other pages where Palladium ring compound, reaction with is mentioned: [Pg.882]    [Pg.1088]    [Pg.207]    [Pg.300]    [Pg.12]    [Pg.191]    [Pg.193]    [Pg.8]    [Pg.44]    [Pg.202]    [Pg.553]    [Pg.351]    [Pg.389]    [Pg.97]    [Pg.445]    [Pg.229]    [Pg.324]    [Pg.564]    [Pg.79]    [Pg.166]    [Pg.229]    [Pg.157]    [Pg.200]    [Pg.363]    [Pg.431]    [Pg.451]    [Pg.557]    [Pg.614]    [Pg.200]    [Pg.148]    [Pg.35]    [Pg.282]    [Pg.173]    [Pg.345]    [Pg.351]    [Pg.371]    [Pg.150]    [Pg.41]    [Pg.340]    [Pg.729]   


SEARCH



Palladium compounds

Reaction with palladium

Reaction with palladium compounds

Ring compounds reaction

With palladium

© 2024 chempedia.info