Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium protocols

Early 2005, Leadbeater s team reported that the previously claimed tran-sition-metal-free Suzuki-type protocol was definitely palladium-catalyzed [ 53 ]. Palladium contaminants down to the level of 50 ppb found in commercially available sodium carbonate were responsible for the generation of the biaryl. For good product yields in a short reaction time under microwave irradiation, a loading of 1 ppm Pd was required. [Pg.171]

PdCl2(PPh3)2 and Cul in a mixture of Et2NH and DMF at 120 °C for 5-25 min were found to be suitable as a general protocol. For less reactive (hetero)aryl bromides and 2-chloropyridine, extra triphenylphosphine was added to improve the stability of the palladium catalyst (Scheme 49). [Pg.183]

A microwave-assisted Cu-catalyzed Sonogashira-type protocol on aryl iodide substrates without the involvement of a palladium catalyst has also been published (Scheme 54) [71]. Reactions were executed using Cut and CS2CO3 in NMP at 195 °C. The application seems to be fairly limited since there are indications that only (hetero)arylacetylenes are suitable coupHng partners for this protocol. In addition, aryl bromides react more sluggishly than aryl iodides. Moreover, even on aryl iodides the reaction times required are on the order of hours. [Pg.185]

Hydrosilylation of dienes accompanied by cyclization is emerging as a potential route to the synthesis of functionalized carbocycles. However, the utility of cycliza-tion/hydrosilylation has been Umited because of the absence of an asymmetric protocol. One example of asymmetric cycUzation/hydrosilylation has been reported very recently using a chiral pyridine-oxazoUne ligand instead of 1,10-phenanthroline of the cationic palladium complex (53) [60]. As shown in Scheme 3-21, the pyridine-oxazoUne Ugand is more effective than the bisoxazoUne ligand in this asymmetric cyclization/hydrosilylation of a 1,6-diene. [Pg.86]

The deleterious effects of catalyst poisoning when carrying out asymmetric hydrogenations at low catalyst loading caimot be overemphasised. In order to eliminate the possibility that the substrate synthesis introduced inhibitory impurities, an alternative synthetic protocol was examined (Scheme 7.4). The use of a brominating agent and an expensive palladium catalysed step in the initial route could limit the development of this as an economically favourable process and this was further motivation to examine alternative routes to the hydrogenation substrate. [Pg.74]

In recent years, cross-coupling methodology has emerged as a viable tool for enamide synthesis, and, indeed, there are a number of published protocols which employ palladium- or copper-catalyzed stereospecific amidations of vinyl halides [17]. For example, Buchwald and coworkers had recently shown that a copper-catalyzed cross-coupling of vinyl bromides or iodides proceeded with retention of stereochemistry (Scheme 9.16), though the only example using a tetrasubstituted vinyl halide, 23, lacked the need for any stereochemical control in the halide portion [18]. Based on this it seemed feasible that the desired enamide 22 could potentially be assembled via a comparable coupling between amide 24 and a stere-odefined vinyl halide such as 25. [Pg.255]

The next task was removal of the C3,C3 -esters. Although the palladium-catalyzed decarboxylation protocol performed well in previous systems, a competing C-H insertion reaction was discovered with the methylidene bridge needed for cercosporin (see below). Since reexamination of alternate decarboxylation methods [48] led to no success, a decarbonylation strategy was explored [49]. Formation of the requisite dialdehyde was best accomplished by overreduction using DIB AL and... [Pg.173]

An even simpler protocol for performing nucleophilic substitutions (aminations) and Suzuki reactions in one pot was reported by the Organ group for the generation of a 42-member library of styrene-based nicotinic acetylcholine receptor (nAChR) antagonists (Scheme 6.21) [49]. After considerable experimentation, the authors found that simultaneous nucleophilic displacement and Suzuki coupling could be carried out very effectively by charging the microwave process vessel with the palladium catalyst (0.5 mol% palladium-on-charcoal), the boronic acid [R1B(OH)2], the... [Pg.120]

Utilizing more reactive discrete palladium-N-heterocyclic carbene (NHC) complexes (for example, Pd(carb)2) or in situ generated palladium/imidazolium salt complexes (1 mol% ligand A), Caddick and coworkers were able to extend the rapid amination protocols described above to electron-rich aryl chlorides (Scheme 6.61) [128],... [Pg.150]

A palladium-catalyzed protocol for carbon-sulfur bond formation between an aryl triflate and para-methoxybenzylthiol was introduced by Macmillan and Anderson (Scheme 6.66) [138], Using palladium(II) acetate as a palladium source and 2,2 -bis(diphenylphosphino)-l,l -binaphthyl (BINAP) as a ligand, microwave heating of the two starting materials in N,N-dimethylformamide at 150 °C for 20 min in the presence of triethylamine base led to the formation of the desired sulfide in 85% yield. [Pg.153]

Several microwave-assisted protocols for soluble polymer-supported syntheses have been described. Among the first examples of so-called liquid-phase synthesis were aqueous Suzuki couplings. Schotten and coworkers presented the use of polyethylene glycol (PEG)-bound aryl halides and sulfonates in these palladium-catalyzed cross-couplings [70]. The authors demonstrated that no additional phase-transfer catalyst (PTC) is needed when the PEG-bound electrophiles are coupled with appropriate aryl boronic acids. The polymer-bound substrates were coupled with 1.2 equivalents of the boronic acids in water under short-term microwave irradiation in sealed vessels in a domestic microwave oven (Scheme 7.62). Work-up involved precipitation of the polymer-bound biaryl from a suitable organic solvent with diethyl ether. Water and insoluble impurities need to be removed prior to precipitation in order to achieve high recoveries of the products. [Pg.338]


See other pages where Palladium protocols is mentioned: [Pg.322]    [Pg.304]    [Pg.322]    [Pg.304]    [Pg.57]    [Pg.47]    [Pg.105]    [Pg.166]    [Pg.173]    [Pg.184]    [Pg.203]    [Pg.279]    [Pg.198]    [Pg.198]    [Pg.214]    [Pg.33]    [Pg.53]    [Pg.54]    [Pg.201]    [Pg.141]    [Pg.514]    [Pg.169]    [Pg.173]    [Pg.179]    [Pg.119]    [Pg.226]    [Pg.252]    [Pg.108]    [Pg.116]    [Pg.120]    [Pg.122]    [Pg.127]    [Pg.130]    [Pg.133]    [Pg.135]    [Pg.138]    [Pg.145]    [Pg.151]    [Pg.153]    [Pg.154]    [Pg.306]    [Pg.354]   
See also in sourсe #XX -- [ Pg.499 , Pg.500 , Pg.501 , Pg.502 ]




SEARCH



Kosugi and Keigo Fugami 4 Overview of Other Palladium-Catalyzed Cross-Coupling Protocols

Palladium complexes ligand protocols

© 2024 chempedia.info