Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium origin

At this point the surface is hydrophilic but still not capable of promoting deposition either of copper or nickel in order to create sites at which these metals will form it is necessary to activate the surface by depositing nuclei of palladium. Originally this was done in two steps, immersion of the components in a solution containing stannous chloride and then transferring them to one based on palladium chloride—from which the metal was deposited. Now however these are combined in a single immersion in a colloidal solution of palladium chloride containing also tin salts in both stannous and stannic states. A typical solution of this type would comprise ... [Pg.176]

I undertook the present task to give a birds-eye view of the broad field of palladium in organic synthesis. 1 have tried to accomplish this ttisk by citing many references these were selected from a much larger number which I have collected over the years. I tried to be as comprehensive as possible by selecting those references which reported original ideas and new reactions, or evident synthetic utility. Synthetic utility is clearly biased towards catalytic rather than stoichiometric reactions and this emphasis is apparent in the selection of the... [Pg.559]

The original German process used either carbonyl iron or electrolytic iron as hydrogenation catalyst (113). The fixed-bed reactor was maintained at 50—100°C and 20.26 MPa (200 atm) of hydrogen pressure, giving a product containing substantial amounts of both butynediol and butanediol. Newer, more selective processes use more active catalysts at lower pressures. In particular, supported palladium, alone (49) or with promoters (114,115), has been found useful. [Pg.107]

The catalyst commonly used in this method is 5 wt % palladium supported on barium sulfate inhibited with quinoline—sulfur, thiourea, or thiophene to prevent reduction of the product aldehyde. A procedure is found in the Hterature (57). Suitable solvents are toluene, benzene, and xylene used under reflux conditions. Interestingly, it is now thought that Rosenmund s method (59) originally was successful because of the presence of sulfur compounds in the xylene used, since the need for an inhibitor to reduce catalyst activity was not described until three years later (60). [Pg.200]

Catalysts for dielectric surfaces are more complex than the simple salts used on metals. The original catalysts were separate solutions of acidic staimous chloride [7772-99-8J, used to wet the surface and deposit an adherent reducing agent, and acidic palladium chloride [7647-10-17, which was reduced to metallic palladium by the tin. This two-step catalyst system is now essentially obsolete. One-step catalysts consist of a stabilized, pre-reacted solution of the palladium and staimous chlorides. The one-step catalyst is more stable, more active, and more economical than the two-step catalyst (21,23). A separate acceleration or activation solution removes loose palladium and excess tin before the catalyzed part is placed in the electroless bath, prolonging bath life and stability. [Pg.107]

Compared with these methods, the palladium-catalyzed oxidation of 1-olefins described here is more convenient and practical. The industrial method of ethylene oxidation to acetaldehyde using PdCl2-CuCl 2-O2 original reaction of this type. The oxidation of various olefins has been carried out. ... [Pg.11]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Vinyl acetate was originally produced hy the reaction of acetylene and acetic acid in the presence of mercury(II) acetate. Currently, it is produced hy the catalytic oxidation of ethylene with oxygen, with acetic acid as a reactant and palladium as the catalyst ... [Pg.200]

Fischer s original method for conversion of the nitrile into an aldehyde involved hydrolysis to a carboxylic acid, ring closure to a cyclic ester (lactone), and subsequent reduction. A modern improvement is to reduce the nitrile over a palladium catalyst, yielding an imine intermediate that is hydrolyzed to an aldehyde. Note that the cyanohydrin is formed as a mixture of stereoisomers at the new chirality center, so two new aldoses, differing only in their stereochemistry at C2, Tesult from Kiliani-Fischer synthesis. Chain extension of D-arabinose, for example, yields a mixture of D-glucose and o-mannose. [Pg.994]

However this was not always the case. It is possible to demonstrate, on the basis of selected examples from the literature representing the experimental evidence and the authors original interpretation, that the catalytic activity of palladium or its alloys changes sometimes dramatically, when there is a possibility of their being converted into the corresponding hydrides. [Pg.254]

Johnson et al. (J4) investigated the hydrogenation of a-methylstyrene catalyzed by a palladium-alumina catalyst suspended in a stirred reactor. The experimental data have recently been reinterpreted in a paper by Polejes and Hougen (P4), in which the original treatment is extended to take account of variations in catalyst loading, variations in impeller type, and variations of gas-phase composition. Empirical correlations for liquid-side resistance to gas-liquid and liquid-solid mass transfer are presented. [Pg.123]

Palladium is known to be a metal that works catalytically in the system. Various supports can be used for Pd, such as active carbon, mesoporous materials, and polymers. All of them deactivate in the sitosterol hydrogenation, most probably because of sulfur and phosphorus impurities present in the raw material, which originates from the tall oil production, a side process of chemical pulping. [Pg.181]

Palladium NHC systems for the hydrodehalogenation of aryl chlorides and bromides and polyhalogenated aromatic substrates originate from about the same time as the first reports on Ni chemistry, and show many similarities. Initial efforts showed that the combination of PdCdba) (2 mol%), one equivalent of imidazolium chloride and KOMe produced an effective system for the reduction of 4-chlorotolu-ene, especially upon use of SIMes HCl 2 (96% yield of toluene after 1 h at 100°C) [7]. Interestingly, higher ligand to metal ratios severely inhibited the catalysis with only 7% yield of toluene achieved in the same time in the presence of two equivalents of SIMes HCl 2. Variation of the metal source (Pd(OAc)2, Pd(CjHjCN)jClj), alkoxide (NaOMe, KO Bu, NaOH/ ec-BuOH) or imidazolium salt (IMes HCl 1, IPr HCl 3, lAd HCl, ICy HCl) all failed to give a more active catalyst. [Pg.211]

In a process developed by Hoffmann La Roche (Roessler, 1996) for the anti-Parkinsonian drug, lazabemide, palladium-catalysed amidocarbonylation of 2,5-dichloropyridine replaced an original synthesis that involved eight steps, starting from 2-methyl-5-ethylpyridine, and had an overall yield of 8%. The amidocarbonylation route affords lazabemide hydrochloride in 65% yield in one step, with 100% atom efficiency (Fig. 2.22). [Pg.41]

Shao M, Liu P, Zhang J, Adzic RR. 2007a. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J Phys Chem Bill 6772-6775. [Pg.312]

This study involved the preparation and characterization of poly(N-phenyl 3,4-dimethylenepyrrolidine) and the subsequent oxidation and reduction of this polymer. The parent polymer was not very soluble, so it was difficult to characterize. However, after oxidizing in the presence of palladium on carbon in nitrobenzene, the resultant poly(N-phenyl 3,4-dimethylenepyrrole) was soluble in several organic solvents. Attempts to reduce the original polymer to the pyrrolidone were unsuccessful. [Pg.127]


See other pages where Palladium origin is mentioned: [Pg.126]    [Pg.126]    [Pg.101]    [Pg.475]    [Pg.69]    [Pg.136]    [Pg.32]    [Pg.125]    [Pg.130]    [Pg.129]    [Pg.238]    [Pg.595]    [Pg.41]    [Pg.136]    [Pg.136]    [Pg.58]    [Pg.740]    [Pg.13]    [Pg.220]    [Pg.284]    [Pg.290]    [Pg.24]    [Pg.998]    [Pg.756]    [Pg.389]    [Pg.216]    [Pg.217]    [Pg.218]    [Pg.226]    [Pg.41]    [Pg.372]    [Pg.53]    [Pg.198]    [Pg.85]    [Pg.91]    [Pg.117]   
See also in sourсe #XX -- [ Pg.369 ]




SEARCH



© 2024 chempedia.info