Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium® complexes enantioselectivity

Helquist et al. [129] have reported molecular mechanics calculations to predict the suitability of a number of chiral-substituted phenanthrolines and their corresponding palladium-complexes for use in asymmetric nucleophilic substitutions of allylic acetates. Good correlation was obtained with experimental results, the highest levels of asymmetric induction being predicted and obtained with a readily available 2-(2-bornyl)-phenanthroline ligand (90 in Scheme 50). Kocovsky et al. [130] prepared a series of chiral bipyridines, also derived from monoterpene (namely pinocarvone or myrtenal). They synthesized and characterized corresponding Mo complexes, which were found to be moderately enantioselective in allylic substitution (up to 22%). [Pg.135]

Chitosan (Fig. 27) was deposited on sihca by precipitation. The palladium complex was shown to promote the enantioselective hydrogenation of ketones [80] with the results being highly dependent on the structure of the substrate. In the case of aromatic ketones, both yield and enantioselectiv-ity depend on the N/Pd molar ratio. Low palladium contents favored enan-tioselectivity but reduced the yield. Very high conversions were obtained with aliphatic ketones, although with modest enantioselectivities. More recently, the immobilized chitosan-Co complex was described as a catalyst for the enantioselective hydration of 1-octene [81]. Under optimal conditions, namely Co content 0.5 mmolg and 1-octene/Co molar ratio of 50, a 98% yield and 98% ee were obtained and the catalyst was reused five times without loss of activity or enantioselectivity. [Pg.187]

Concerning enantioselective processes, Fujihara and Tamura have proved that palladium NPs containing (S)-BINAP (2,2 -bis(diphenylphosphino)-l,l -binaphthyl) as chiral stabiliser, catalyse the hydrosilylation of styrene with trichlorosilane, obtaining (S)-l-phenylethanol as the major isomer (ee = 75%) [42]. In contrast, the palladium complex [Pd(BINAP)(C3H5)]Cl is inactive for the same reaction [43]. [Pg.431]

In 2005, Carretero et al. reported a second example of chiral catalysts based on S/P-coordination employed in the catalysis of the enantioselective Diels-Alder reaction, namely palladium complexes of chiral planar l-phosphino-2-sulfenylferrocenes (Fesulphos). This new family of chiral ligands afforded, in the presence of PdCl2, high enantioselectivities of up to 95% ee, in the asymmetric Diels-Alder reaction of cyclopentadiene with A-acryloyl-l,3-oxazolidin-2-one (Scheme 5.17). The S/P-bidentate character of the Fesulphos ligands has been proved by X-ray diffraction analysis of several metal complexes. When the reaction was performed in the presence of the corresponding copper-chelates, a lower and opposite enantioselectivity was obtained. This difference of results was explained by the geometry of the palladium (square-planar) and copper (tetrahedral) complexes. [Pg.198]

At the beginning of the 1970s a convenient procedure was described for converting olefins into substituted butanedioates, namely through a Pd(II)-cata-lysed bisalkoxycarbonylation reaction. So far various catalytic systems have been applied to this process, but it took twenty years before the first examples of an enantioselective bisalkoxycarbonylation of olefins were reported. Ever since, the asymmetric bisalkoxycarbonylation of alkenes catalysed by palladium complexes bearing chiral ligands has attracted much attention. The products of these reactions are important intermediates in the syntheses of pharmaceuticals such as 2-arylpropionic acids, the most important class of... [Pg.350]

Cationic palladium complex 121 reductively coupled enynes (Eq. 20) using trichlorosilane as the stoichiometric reductant [71]. This combination of catalyst and silane afforded silylated methylenecyclopentanes such as 122 in good yield from enynes such as 123. Attempts to develop an enantioselective version of this reaction were not successful [71]. When enediyne 124 was cyclized in the presence of trichlorosilane, the reaction favored enyne cycli-zation 126 by a 3 1 ratio over diyne cyclization to 125 (Eq. 21). In contrast, when the more electron-rich dichloromethylsilane was used as the reductant, diyne cyclization product 125 was preferred in a ratio of 4 1 [71]. Selectivities of up to 10 1 for enyne cyclization were observed, depending on the substrate employed [72],... [Pg.242]

Asymmetric synthesis of tricyclic nitro ergoline synthon (up to 70% ee) is accomplished by intramolecular cyclization of nitro compound Pd(0)-catalyzed complexes with classical C2 symmetry diphosphanes.94 Palladium complexes of 4,5-dihydrooxazoles are better chiral ligands to promote asymmetric allylic alkylation than classical catalysts. For example, allylic substitution with nitromethane gives enantioselectivity exceeding 99% ee (Eq. 5.62).95 Phosphi-noxazolines can induce very high enatioselectivity in other transition metal-catalyzed reactions.96 Diastereo- and enantioselective allylation of substituted nitroalkanes has also been reported.9513... [Pg.146]

Enantioselective carbenoid cyclopropanation can be expected to occur when either an olefin bearing a chiral substituent, or such a diazo compound or a chiral catalyst is present. Only the latter alternative has been widely applied in practice. All efficient chiral catalysts which are known at present are copper or cobalt(II) chelates, whereas palladium complexes 86) proved to be uneflective. The carbenoid reactions between alkyl diazoacetates and styrene or 1,1 -diphenylethylene (Scheme 27) are usually chosen to test the efficiency of a chiral catalyst. As will be seen in the following, the extent to which optical induction is brought about by enantioselection either at a prochiral olefin or at a prochiral carbenoid center, varies widely with the chiral catalyst used. [Pg.159]

For example, cycloaddition of nitrone (643, R1 =Ph, R2 = Me) to DIO, catalyzed by chiral phosphine-palladium complexes (Fig. 2.42), gave isoxazolidines (644) in high yield with high enantioselectivity (794). [Pg.355]

The a-arylation of carbonyl compounds (sometimes in enantioselective version) such as ketones,107-115 amides,114 115 lactones,116 azlactones,117 malonates,118 piperidinones,119,120 cyanoesters,121,122 nitriles,125,124 sul-fones, trimethylsilyl enolates, nitroalkanes, esters, amino acids, or acids has been reported using palladium catalysis. The asymmetric vinylation of ketone enolates has been developed with palladium complexes bearing electron-rich chiral monodentate ligands.155... [Pg.314]

Palladium complexes are general and versatile catalysts for allylic amination.1,la lh The palladium-catalyzed allylic aminations of 1,3-symmetrically disubstituted substrates, including enantioselective versions, have been widely studied.1, a h It has been important to control the regioselectivity in allylic amination of unsymmetrical substrates 1 or 2 (Equation (1)). In general, palladium-catalyzed allylic amination gives the ( )-linear product 3Tla lh regiocontrol in amination has recently attracted much attention in approaches toward the branched product 4. [Pg.695]

A new type of asymmetric hydrosilylation which produces axially chiral allenylsilanes has been reported by use of a palladium catalyst coordinated with the bisPPFOMe ligand 51b.64 The hydrosilylation of l-buten-3-ynes substituted with bulky groups such as tert-butyl at the acetylene terminus took place in a 1,4-fashion to give allenyl(trichloro)-silanes with high selectivity. The highest enantioselectivity (90% ee) was observed in the reaction of 5,5-dimethyl-T hexen-3-yne with trichlorosilane catalyzed by the bisPPFOMe-palladium complex (Scheme 13). [Pg.828]

It is worth noting, however, that chiral phosphine-palladium complexes generated from palladium salts and BINAP or MOP cannot be used for this oxidation because phosphines will be readily oxidized to phosphine oxides under the reaction conditions, leading to the deactivation of the catalyst. As reaction without the chiral catalyst will give a racemic product, this deactivation of the catalyst will cause a drop in the enantioselectivity of the whole process. [Pg.470]

Yang described the Pd-induced cyclization of an aryl bromide onto a pendant cyano group leading to y-carbolines and related compounds [488], Genet studied the use of chiral palladium complexes in the construction of the C-ring of ergot alkaloids, a study that culminated in a synthesis of (-)-chanoclavine I [489-491]. For example, nitroindole 388 is cyclized to 389 in 57% yield and with enantioselectivities of up to 95% using Pd(OAc)2 and (S)-(-)-BINAP. [Pg.163]

Based on these reactions, Imada et al. reported the first enantioselective alkylation of 2,3-alkadienyl phosphates 96 by employing malonate derivatives 97 in the presence of palladium complex catalysts bearing MeOBIPHEP or BINAP as ligand (Scheme 14.21) [49]. The highest enantioselectivity (90% ee) was obtained by the catalyst combination Pd2(dba)3-CHC13 and (R)-MeOBIPHEP. [Pg.861]

Bidentate chiral water-soluble ligands such as (S,S)-2,4-bis(diphenyl-sulfonatophosphino)butane BDPPTS (Fig. 2) or (R,R) 1,2-bis(diphenylsul-fonatophosphinomethyl)cyclobutane have been prepared [25]. Their palladium complexes catalyze the synthesis of chiral acids from various viny-larenes and an ee of 43% has been reached for p-methoxystyrene with the BDPPTS ligand. Furthermore, recycling of the aqueous phase has shown that the regio- and enantioselectivity are maintained and that no palladium leaches. [Pg.108]

Carbon-carbon bond-forming reactions are one of the most basic, but important, transformations in organic chemistry. In addition to conventional organic reactions, the use of transition metal-catalyzed reactions to construct new carbon-carbon bonds has also been a topic of great interest. Such transformations to create chiral molecules enantioselectively is therefore very valuable. While various carbon-carbon bond-forming asymmetric catalyses have been described in the literature, this chapter focuses mainly on the asymmetric 1,4-addition reactions under copper or rhodium catalysis and on the asymmetric cross-coupling reactions catalyzed by nickel or palladium complexes. [Pg.59]

Enantioselective alkylative ring opening of these oxabicyclic alkenes has also been studied. Lautens and coworkers discovered that palladium complexes efficiently catalyze the addition of organozinc reagents to these activated alkenes with concomitant ring opening. In the presence of (Tol-BINAP)PdCl2, diethylzinc adds to oxabenzonor-... [Pg.286]

Catalytic enantioselective synthesis of 4,4-dimethyl-l-phenyl-l,2-pentadiene from 4,4-dimethyl-1,2-pentadiene and iodobenzene using 0.4 to 1 mol % of palladium complexes containing chiral phosphane ligands as the catalyst for the enantioselective cross coupling134 is the only example of substoichiometric transition metal catalyzed enantioselective allene synthesis. [Pg.563]

At best, the product has 26% op using zerovalent or divalent palladium complexes of (R,R)-Diop. Ligands which give rise to a more rigid chiral environment around the metal center, e.g., (l/ ,2/ )-bis(diphenylphosphano)cyclopentane, may lead to enhanced enantioselectivity. [Pg.563]


See other pages where Palladium® complexes enantioselectivity is mentioned: [Pg.141]    [Pg.207]    [Pg.78]    [Pg.288]    [Pg.7]    [Pg.8]    [Pg.9]    [Pg.14]    [Pg.26]    [Pg.28]    [Pg.34]    [Pg.45]    [Pg.334]    [Pg.556]    [Pg.74]    [Pg.182]    [Pg.184]    [Pg.190]    [Pg.276]    [Pg.376]    [Pg.697]    [Pg.817]    [Pg.824]    [Pg.173]    [Pg.158]    [Pg.93]    [Pg.491]    [Pg.95]    [Pg.103]    [Pg.113]    [Pg.147]   


SEARCH



Enantioselective complexation

Enantioselective complexes

© 2024 chempedia.info