Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium catalysts process

In a related process, 1,4-dichlorobutene was produced by direct vapor-phase chlorination of butadiene at 160—250°C. The 1,4-dichlorobutenes reacted with aqueous sodium cyanide in the presence of copper catalysts to produce the isomeric 1,4-dicyanobutenes yields were as high as 95% (58). The by-product NaCl could be recovered for reconversion to Na and CI2 via electrolysis. Adiponitrile was produced by the hydrogenation of the dicyanobutenes over a palladium catalyst in either the vapor phase or the Hquid phase (59,60). The yield in either case was 95% or better. This process is no longer practiced by DuPont in favor of the more economically attractive process described below. [Pg.220]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Novel palladium catalysts show marked improvements in both yields and selectivities, compared to nickel carbonyl catalysts utilized in eadier commercial carbonylation processes (83,84). The palladium catalysts are also expected to be less hazardous. [Pg.252]

UBE Industries, Ltd. has improved the basic method (32—48). In the UBE process, dialkyl oxalate is prepared by oxidative CO coupling in the presence of alkyl nitrite and a palladium catalyst. [Pg.459]

Ca.ta.lysis, The most important iadustrial use of a palladium catalyst is the Wacker process. The overall reaction, shown ia equations 7—9, iavolves oxidation of ethylene to acetaldehyde by Pd(II) followed by Cu(II)-cataly2ed reoxidation of the Pd(0) by oxygen (204). Regeneration of the catalyst can be carried out in situ or ia a separate reactor after removing acetaldehyde. The acetaldehyde must be distilled to remove chloriaated by-products. [Pg.183]

The first CO route to make adipic acid is a BASF process employing CO and methanol in a two-step process producing dimethyl adipate [627-93-0] which is then hydroly2ed to the acid (43—46). Cobalt carbonyl catalysts such as Co2(CO)g are used. Palladium catalysts can be used to effect the same reactions at lower pressures (47—49). [Pg.342]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

Another alternative method to produce sebacic acid iavolves a four-step process. First, butadiene [106-99-0] is oxycarbonylated to methyl pentadienoate which is then dimerized, usiag a palladium catalyst, to give a triply unsaturated dimethyl sebacate iatermediate. This unsaturated iatermediate is hydrogenated to dimethyl sebacate which can be hydrolyzed to sebacic acid. Small amounts of branched chain isomers are removed through solvent crystallizations giving sebacic acid purities of greater than 98% (66). [Pg.63]

A one-stage process for producing vinyl acetate directly from ethylene has also been disclosed. In this process ethylene is passed through a substantially anhydrous suspension or solution of acetic acid containing cupric chloride and copper or sodium acetate together with a palladium catalyst to yield vinyl acetate. [Pg.388]

This section discusses the processes for nitrile rubber hydrogenation developed during past years using a heterogeneous catalyst. The published reports suggest that mostly the palladium catalyst has been used for nitrile... [Pg.557]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

In 2003, the microwave-assisted coupUng of aryl hahdes with acetylenes using a palladium catalyst were carried out employing a modified Smith Process vial [49]. These vessels, equipped with a polypropylene frit and screw cap at the bottom, and sealed with an aluminum crimp cap fitted with a silicon septum at the top (Fig. 8), faciUtated the processing of approximately 1 g of solid support. Notably, they are compatible with stirring of the reaction mixture and monitoring of the temperature and pressure. [Pg.90]

In another nonelectrolytic process, arylacetic acids are converted to vi c-diaryl compounds 2A1CR2COOH —> ArCR2CR2Ar by treatment with sodium persulfate (Na2S20g) and a catalytic amount of AgNOs." Both of these reactions involve dimerization of free radicals. In still another process, electron-deficient aromatic acyl chlorides are dimerized to biaryls (2 ArCOCl —> ArAr) by treatment with a disilane RsSiSiRs and a palladium catalyst." " ... [Pg.942]

The reaction was carried out using a palladium catalyst supported by activated carbon [36]. It is moderately fast at room temperature with 1 atm hydrogen. In the micro-reactor processing, however, operation at 50 °C was used. The reactor is first order with respect to hydrogen and zero order with respect to a-methylstyrene. [Pg.623]


See other pages where Palladium catalysts process is mentioned: [Pg.165]    [Pg.88]    [Pg.475]    [Pg.448]    [Pg.284]    [Pg.294]    [Pg.484]    [Pg.485]    [Pg.412]    [Pg.202]    [Pg.91]    [Pg.279]    [Pg.136]    [Pg.592]    [Pg.121]    [Pg.143]    [Pg.483]    [Pg.322]    [Pg.208]    [Pg.208]    [Pg.216]    [Pg.218]    [Pg.219]    [Pg.221]    [Pg.225]    [Pg.227]    [Pg.227]    [Pg.431]    [Pg.76]    [Pg.79]    [Pg.233]    [Pg.1336]    [Pg.566]    [Pg.104]    [Pg.185]    [Pg.500]    [Pg.500]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Catalysts processes

Palladium catalysts catalyst

© 2024 chempedia.info