Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium catalysis electrophilic addition

The intramolecular arylation of sp3 C-H bonds is observed in the reaction of l-/ r/-butyl-2-iodobenzene under palladium catalysis (Equation (71)) 94 94a 94b The oxidative addition of Arl to Pd(0) gives an ArPdl species, which undergoes the electrophilic substitution at the tert-butyl group to afford the palladacycle. To this palladacycle, another molecule of Arl oxidatively adds, giving the Pd(iv) complex. [Pg.231]

Alkylation and deprotection of N-protected aminomethylphosphonate esters 6 are shown in Scheme 6. The nitrogen is protected as the imine derived from benzophenone or a benz-aldehyde, and a variety of conditions are used for deprotonation and alkylation (Table 2). The benzaldehyde imine of aminomethylphosphonate can be deprotonated with LDA and alkylated with electrophilic halides (entries 1 and 2). For the best yields, saturated alkyl bromides require an equivalent of HMPA as an additive. 36 Allylic esters can be added to the carbanion with palladium catalysis (entries 3-7). 37,38 For large-scale production, phase-transfer catalysis appears to be effective and inexpensive (entries 8-12). 39,40 ... [Pg.496]

The copper-catalysed asymmetric conjugate addition of dialkylzinc leads to homo-chiral zinc enolates.28 These intermediates have been trapped in situ with activated allylic electrophiles, without the need for additional palladium catalysis (Scheme 3). [Pg.281]

Among common carbon-carbon bond formation reactions involving carbanionic species, the nucleophilic substitution of alkyl halides with active methylene compounds in the presence of a base, e. g., malonic and acetoacetic ester syntheses, is one of the most well documented important methods in organic synthesis. Ketone enolates and protected ones such as vinyl silyl ethers are also versatile nucleophiles for the reaction with various electrophiles including alkyl halides. On the other hand, for the reaction of aryl halides with such nucleophiles to proceed, photostimulation or addition of transition metal catalysts or promoters is usually required, unless the halides are activated by strong electron-withdrawing substituents [7]. Of the metal species, palladium has proved to be especially useful, while copper may also be used in some reactions [81. Thus, aryl halides can react with a variety of substrates having acidic C-H bonds under palladium catalysis. [Pg.213]

The most common means of activating aromatic C-H bonds via palladium catalysis is by electrophilic C-H activation. This proceeds more like a Freidel-Craft type metahation mechanism, followed by rearomatization to form versatile aryl-metal intermediates (Scheme 5) [19]. It can occur with electrophilic palladium(II) catalysts such as Pd(OAc)2, PdCl2, Pd(TFA)2 (Scheme 5a) or on electrophilic aryl-pahadium(II) complexes, that result from oxidative addition of palladium(O) into an aryl halide (Scheme 5b). The resultant aryl-palladium(H) complexes are analogous to those observed in conventional cross-coupling reactions and as such are versatile intermediates in the formation of new C-C bonds. [Pg.90]

Further improvements in palladium catalysis were achieved with a larger excess of benzene as co-solvent, and also with DavePhos (95) as ligand and pivalic acid as additive (Scheme 9.31) [70]. This catalytic system tolerated various valuable functional groups, such as a nitro substituent. These reaction conditions allowed not only for the achievement of better yields of biaryls with aryl bromides as electrophiles, but also improved chemoselectivies of these transformations. Thus, in competition experiments between benzene (87) and fluorobenzene (96), the latter reacted preferentially in a ratio of >11 < 1 (Scheme 9.31) [70],... [Pg.276]

The nucleophilic and electrophilic additions are the most common reactions and have a large number of applications in organic synthesis and palladium catalysis. The nucleophilic additions are more or less easy depending on whether the complex is cationic or neutral. In the latter case, the ancillary ligands must be electron withdrawing (CO, NO), or the allyl group must bear an electron-withdrawing substituent in order to allow the reaction ... [Pg.236]

For instance, it is reported that a chiral copper catalyst (R,R)-L promotes asymmetric conjugate addition of dialkyl zinc to a,p-unsaturated ketone 19 to form homochiral zinc enolate 20. This intermediate is then trapped in situ with NPP as electrophile, without the need of additional palladium catalysis. Good yield, high trans/cis (95/5) ratio, and excellent enantioselectivity (99%) are obtained. Moreover, the multi-functionalized nature of 21 makes it a versatile intermediate for further elaboration. [Pg.408]

Electrophilic catalysis may play an important role in the case of the similar benzylic carbon, too. For an O-benzyl system, it was found in a 1997 experiment that palladium oxide is a much more effective catalyst than palladium metal when the catalyst has been prereduced with chemical reducing agents. This finding shows very clearly that the electrophilic character of the unreduced metal ions plays an important role in the hydrogenolysis of the benzyl C—O bonds. Additional support for this mechanism is the fact that a small amount of butylamine can inhibit the hydrogenolysis of the benzyl C—O bond. [Pg.122]

The same transition metal systems which activate alkenes, alkadienes and alkynes to undergo nucleophilic attack by heteroatom nucleophiles also promote the reaction of carbon nucleophiles with these unsaturated compounds, and most of the chemistry in Scheme 1 in Section 3.1.2 of this volume is also applicable in these systems. However two additional problems which seriously limit the synthetic utility of these reactions are encountered with carbon nucleophiles. Most carbanions arc strong reducing agents, while many electrophilic metals such as palladium(II) are readily reduced. Thus, oxidative coupling of the carbanion, with concomitant reduction of the metal, is often encountered when carbon nucleophiles arc studied. In addition, catalytic cycles invariably require reoxidation of the metal used to activate the alkene [usually palladium(II)]. Since carbanions are more readily oxidized than are the metals used, catalysis of alkene, diene and alkyne alkylation has rarely been achieved. Thus, virtually all of the reactions discussed below require stoichiometric quantities of the transition metal, and are practical only when the ease of the transformation or the value of the product overcomes the inherent cost of using large amounts of often expensive transition metals. [Pg.571]

In addition to the very important palladium-catalysed reactions, boronic acids undergo a number of useful reactions that do not require transition-metal catalysis, particularly those involving electrophilic ipso-substitutions by carbon electrophiles. The Petasis reaction involves ip,y(9-replacement of boron under Mannich-like conditions and is successful with electron-rich heterocyclic boronic acids. A variety of quinolines and isoquinolines, activated by ethyl pyrocarbonate, have been used as the Mannich reagent . A Petasis reaction on indole 3-boronic acids under standard conditions was an efficient route to very high de a-indolylglycines. " ... [Pg.51]

Subsequently, the ruthenium-catalysed alkenylation of various acrylates was accomplished with alkenyl halides [62]. Most effective catalysis was achieved with [Ru(COD)(COT)] (98) as catalyst and NEts as base in the absence of additional solvent. Interestingly, both alkenyl bromides and chlorides could be employed as electrophiles (Scheme 10.35). When using an alkenyl chloride, the catalytic activity could be improved through the addition of P(p-C6H4p)3 (99) as ligand. The efficiency of this ruthenium catalyst in the alkenylation of /3-chlorostyrene (21) compared favourably with that observed for either Pd(OAc)2 or Pd(OAc)2/P(o-Tol)3 as catalysts. With respect to the working mode of the catalyst, a radical mechanism was shown to be less likely. Instead, Mitsudo et al. [62] proposed an initial oxidative addition of the alkenyl halide to a ruthenium(O) species followed by insertion of the alkene and )8-hydride elimination, all in analogy to palladium-catalysed processes. [Pg.397]

As carboxylic acid additives increased the efficiency of palladium catalysts in direct arylations through a cooperative deprotonation/metallation mechanism (see Chapter 11) [45], their application to ruthenium catalysis was tested. Thus, it was found that a ruthenium complex modified with carboxylic acid MesC02H (96) displayed a broad scope and allowed for the efficient directed arylation of triazoles, pyridines, pyrazoles or oxazolines [44, 46). With respect to the electrophile, aryl bromides, chlorides and tosylates, including ortho-substituted derivatives, were found to be viable substrates. It should be noted here that these direct arylations could be performed at a lower reaction temperatures of 80 °C (Scheme 9.34). [Pg.326]


See other pages where Palladium catalysis electrophilic addition is mentioned: [Pg.27]    [Pg.133]    [Pg.266]    [Pg.298]    [Pg.306]    [Pg.322]    [Pg.847]    [Pg.94]    [Pg.347]    [Pg.395]    [Pg.261]    [Pg.41]    [Pg.299]    [Pg.302]    [Pg.791]    [Pg.321]    [Pg.1042]    [Pg.53]    [Pg.321]    [Pg.3531]    [Pg.567]    [Pg.3530]    [Pg.2]    [Pg.142]    [Pg.168]    [Pg.370]    [Pg.525]    [Pg.347]    [Pg.37]    [Pg.79]    [Pg.93]    [Pg.94]   
See also in sourсe #XX -- [ Pg.382 ]




SEARCH



Additives catalysis

Catalysis electrophilic

Palladium catalysis

Palladium catalysis addition

Palladium catalysis electrophilic

Palladium electrophiles

© 2024 chempedia.info