Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium addition initiated

The reaction is catalyzed by a group VIII metal species, particularly that of rhodium or palladium. The initial metal species may be any variety of complexes (e.g., PdCl2 Pd acetate, etc.). A source of halide is necessary iodide is especially effective. The most convenient source is methyl iodide, since it is likely a reaction intermediate. In addition, an organic promoter must be included for catalytic activity. These promoters are generally tertiary phosphines or amines. Also, chromium complexes were found to have an important promotional effect. [Pg.139]

Fig. 18.5 TEM images and Gaussian fits of the size distribution of the palladium nanoparticles initially (a, b), after being exposed to the solvent (1 3 water acetonitrile) and the base (sodium acetate SA) (c, d), after being exposed to the base and phenylboronre acid (PA) (e, f), and after being exposed to the base and iodobenzene (I) (g, h). It can be seen that the Ostwald ripening process is inhibited upon exposure to the phenylboronic acid while exposure to iodobenzene results in the growth of the nanoparticles. In addition, refluxing the nanoparticles in the solvent alone also results in the Ostwald ripening of the particles. Reprinted with permission from [40]. Copyright 2003, American Chemical Society... Fig. 18.5 TEM images and Gaussian fits of the size distribution of the palladium nanoparticles initially (a, b), after being exposed to the solvent (1 3 water acetonitrile) and the base (sodium acetate SA) (c, d), after being exposed to the base and phenylboronre acid (PA) (e, f), and after being exposed to the base and iodobenzene (I) (g, h). It can be seen that the Ostwald ripening process is inhibited upon exposure to the phenylboronic acid while exposure to iodobenzene results in the growth of the nanoparticles. In addition, refluxing the nanoparticles in the solvent alone also results in the Ostwald ripening of the particles. Reprinted with permission from [40]. Copyright 2003, American Chemical Society...
This catalyst has been optimized over the years [80-82], and the best support was found to be acetylene black due to its highly olefinic nature. Palladium was initially chosen as the main catalytic metal, due to its high activity and low cost. This was improved by promoting it with a small amount of platinum however, this catalyst was too active and yielded unwanted side products via reactions such as ring hydrogenation. The selectivity of this catalyst was then corrected by the addition of iron oxide, which impeded the undesired reactions. Iron has also been proven to be a promoter for the hydrogenation of aliphatic nitro compounds [83]... [Pg.557]

Dipolar cycloaddition of the diazoalkane ((CH3)2CN2) to (72) in acetone gave the tetracyclic compound (73). The unsubstituted compound did not react. The nitro group at the 6-position activates the C(5)—C(6) and C(7)—C(8) double bonds for cycloaddition <89H(28)259>. It was originally reported that [l,2,4]triazolo[4,3-a]pyridine (29) reacted with DMAD in the presence of 5% Pd/C to give (74) <81IJC(B)10>. It was subsequently shown that this reaction produces three products independent of the use of the palladium catalyst. Initial Michael addition of DMAD to (29) via its... [Pg.373]

The assembly of polyfunctional compounds is further illustrated by a recent example of a one-pot reaction (Scheme In the first reaction step a rhodium-catalyzed [2 + 2 + 2] cyclization of a bisaUcyne with a monoaUcyne takes place, building up a functionalized benzene nucleus. Subsequent addition of a palladium catalyst initiates the Heck-type heterocy-clization, which is finally followed by the capturing of the intermediary aUcyl-Pd complex with a boron-substituted pyridine. [Pg.1260]

A mechanistic alternative to the oxidative addition of R-X substrates to palladium to initiate cyclization is to rely upon palladium(II) catalysts to mediate heterocycle formation, follo ved by subsequent alkene insertion into the palladium-carbon bond generated (9, Scheme 6.13c). This can be followed by P-hydride elimination to provide a Heck-type post functionalization of these heterocydes (Scheme 6.19). [Pg.167]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Examples of perfluoroalkyl iodide addition to the triple bond include free radical addition of perfluoropropyl iodide to 1 -heptyne [28] (equation 21), thermal and free radical-initiated addition of lodoperfluoroalkanesulfonyl fluorides to acetylene [29] (equation 22), thermal addition of perfluoropropyl iodide to hexa-fluoro 2 butyne [30] (equation 23), and palladium-catalyzed addition of per-fluorobutyl iodide to phenylacetylene [31] (equation 24) The E isomers predominate in these reactions Photochemical addition of tnfluoromethyl iodide to vinylacetylene gives predominantly the 1 4 adduct by addition to the double bond [32] Platinum catalyzed addition of perfluorooctyl iodide to l-hexyne in the presence of potassium carbonate, carbon monoxide, and ethanol gives ethyl () per fluorooctyl-a-butylpropenoate [JJ] (equation 25)... [Pg.763]

It was found [99JCS(PI )3713] that, in all cases, the formation of the deiodinated products 38 and 39 was accompanied by formation of the diynes 40 which were isolated in 60-90% yield. The authors believed that the mechanism of deiodination may be represented as an interaction ofbis(triphenylphosphine)phenylethynyl-palladium(II) hydride with the 4-iodopyrazole, giving rise to the bisftriphenylphos-phine)phenylethynyl palladium(II) iodide complex which, due to the reductive elimination of 1 -iodoalkyne and subsequent addition of alk-1 -yne, converts into the initial palladium complex. Furthermore, the interaction of 1-iodoalkynes with the initial alkyne in the presence of Cul and EtsN (the Cadiot-Chodkiewicz reaction) results in the formation of the observed disubstituted butadiynes 40 (Scheme 51). [Pg.27]

Reductive cleavage of phenylhydrazones of carbonyl compounds provides a route to amines. The reduction is carried out conveniently in ethanol containing ammonia over palladium-on-carbon. Ammonia is used to minimize formation of secondary amines, derived by addition of the initially formed amine to the starting material (160). Alternatively, a two-phase system of benzene, cyclohexane, toluene, or dioxane and aqueous hydrochloric acid can be used. [Pg.169]

The intramolecular Heck reaction presented in Scheme 8 is also interesting and worthy of comment. Rawal s potentially general strategy for the stereocontrolled synthesis of the Strychnos alkaloids is predicated on the palladium-mediated intramolecular Heck reaction. In a concise synthesis of ( )-dehydrotubifoline [( )-40],22 Rawal et al. accomplished the conversion of compound 36 to the natural product under the conditions of Jeffery.23 In this ring-forming reaction, the a-alkenylpalladium(n) complex formed in the initial oxidative addition step engages the proximate cyclohexene double bond in a Heck cyclization, affording enamine 39 after syn /2-hydride elimination. The latter substance is a participant in a tautomeric equilibrium with imine ( )-40, which happens to be shifted substantially in favor of ( )-40. [Pg.574]

The yield of the cyclization step under the influence of a metal template can be increased when the corresponding dialdehyde 19 of the tetrapyrrole 16 is used. The reaction sequence is initiated by insertion of palladium(II) or nickel(II) into the tetrapyrrole to give 20 followed by Michael addition of one acrylaldehyde side chain to the other yielding the macrotetracycle 21 from which in a retro-Michael reaction acetaldehyde is eliminated to give 22. [Pg.679]

Independently, Caddick et al. reported microwave-assisted amination of aryl chlorides using a palladium-N-heterocyclic carbene complex as the catalyst (Scheme 99) [lOlj. Initial experiments in a domestic microwave oven (reflux conditions) revealed that the solvent is crucial for the reaction. The Pd source also proved very important, since Pd(OAc)2 at high power in DMF gave extensive catalyst decomposition and using it at medium and low power gave no reaction at all. Pd(dba)2/imidazohum salt (1 mol% catalyst loading) in DME with the addition of some DMF was found to be suitable. Oil bath experiments indicated that only thermal effects are governing the amination reactions. [Pg.203]

The palladium(O) complex undergoes first an oxydative addition of the aryl halide. Then a substitution reaction of the halide anion by the amine occurs at the metal. The resulting amino-complex would lose the imine with simultaneous formation of an hydropalladium. A reductive elimination from this 18-electrons complex would give the aromatic hydrocarbon and regenerate at the same time the initial catalyst. [Pg.246]

Other nucleophiles add to conjugated systems to give Michael-type products. Aniline derivatives add to conjugated aldehydes in the presence of a catalytic amount of DBU (p. 488). Amines add to conjugated esters in the presence of InCla, La(OTf)3, or YTb(OTf)3 at 3kbar, for example, to give P-amino esters. This reaction can be initiated photochemically. An intramolecular addition of an amine unit to a conjugated ketone in the presence of a palladium catalyst, or... [Pg.1023]

The groups R2N and Cl can be added directly to alkenes, allenes, conjugated dienes, and alkynes, by treatment with dialkyl-V-chloroamines and acids. " These are free-radical additions, with initial attack by the R2NH- radical ion. " N-Halo amides (RCONHX) add RCONH and X to double bonds under the influence of UV light or chromous chloride. " Amines add to allenes in the presence of a palladium catalyst. ... [Pg.1045]

Substantially more work has been done on reactions of square-planar nickel, palladium, and platinum alkyl and aryl complexes with isocyanides. A communication by Otsuka et al. (108) described the initial work in this area. These workers carried out oxidative addition reactions with Ni(CNBu )4 and with [Pd(CNBu )2] (. In a reaction of the latter compound with methyl iodide the complex, Pd(CNBu )2(CH3)I, stable as a solid but unstable in solution, was obtained. This complex when dissolved in toluene proceeds through an intermediate believed to be dimeric, which then reacts with an additional ligand L (CNBu or PPh3) to give PdL(CNBu )- C(CH3)=NBu I [Eq. (7)]. [Pg.31]

Since the initial report on the addition reactions of palladium(II) and platinum(II) isocyanide complexes by Badley et al. (S), a rather substantial number of further examples have been reported. These are summarized in Table II. [Pg.45]

It is not clear whether the X anion remains ligated to the palladium(II) center. For example, for acetic acid, the palladium hydride was initially postulated as being HPd(OAc)L ,377,378 but more recently as HPdL +.367 To date, none of these complexes has been characterized.367 Oxidative addition of acetic acid or formic acid to a palladium(O) complex in DMF affords a cationic palladium hydride /ruw.v-I IPd(PPh3)2(DMF)+, with an acetate or a formate counter-anion. Both reactions are reversible and involve an unfavorable equilibrium so that a large excess of acid is required for the quantitative formation of the palladium hydride complex.379 This allows us to conclude that the catalytic reactions initiated by reaction of palladium(O) and acetic acid (or formic acid) proceed via a cationic palladium hydride trans-HPdfPPtHWDMF)"1", when they are performed in DMF.379... [Pg.586]

A wide variety of heterocycles can be readily prepared by the heteroannulation of alkynes. For example, the palladium-catalyzed annulation of internal alkynes by 2-iodoanilines provides easy access to 2,3-disubstituted indoles by a process that involves initial reduction of Pd(OAc)2 to Pd(0), oxidative addition of the aryl halide to Pd(0), c/s-addition of the arylpalladium... [Pg.435]

Anderson and Kemball (35) examined the reaction between gaseous deuterium and benzene catalyzed by evaporated films of iron, nickel, palladium, silver, tungsten, and platinum. The order of reactivity (estimated from the temperature at which the addition reaction achieved an initial rate of 1% per minute for a 10 mg film at certain specified reactant... [Pg.135]

Initially we tried the standard approach, reduction of NiL, NiB, or NiC with 2.0 equivalents of potassium in refluxing THF. Finely divided black nickel powders were obtained however, they showed rather limited reactivity toward oxidative addition with carbon-halogen bonds. Similar results were found for palladium and platinum. [Pg.230]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

Indoles, pyrroles, and carbazoles themselves are suitable substrates for palladium-catalyzed coupling with aryl halides. Initially, these reactions occurred readily with electron-poor aryl halides in the presence of palladium and DPPF, but reactions of unactivated aryl bromides were long, even at 120 °C. Complexes of sterically hindered alkylmonophosphines have been shown to be more active catalysts (Equation (25)). 8 102 103 In the presence of these more active catalysts, reactions of electron-poor or electron-rich aryl bromides and electron-poor or electron-neutral aryl chlorides occurred at 60-120 °C. Reactions catalyzed by complexes of most of the /-butylphosphines generated a mixture of 1- and 3-substituted indoles. In addition, 2- and 7-substituted indoles reacted with unhindered aryl halides at both the N1 and C3 positions. The 2-naphthyl di-t-butylphosphinobenzene ligand in Equation (25), however, generated a catalyst that formed predominantly the product from A-arylation in these cases. [Pg.380]


See other pages where Palladium addition initiated is mentioned: [Pg.576]    [Pg.106]    [Pg.545]    [Pg.137]    [Pg.248]    [Pg.299]    [Pg.466]    [Pg.45]    [Pg.1166]    [Pg.59]    [Pg.30]    [Pg.246]    [Pg.567]    [Pg.576]    [Pg.580]    [Pg.724]    [Pg.645]    [Pg.84]    [Pg.53]    [Pg.207]    [Pg.716]    [Pg.199]    [Pg.1901]    [Pg.96]    [Pg.63]   


SEARCH



Initial addition

© 2024 chempedia.info