Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen poly

Firedamp-proof Detonators. Firedamp-proof detonators have net received tht attention that firedamp-proof expls have, possibly because the expln of the, detonator is lost in the immediately succeeding expln of the main charge. Treatment of the detonator charge in caps follows similar lines to treatment of Dynamites in the addition of cooling additives, such as salts or wax (Ref 1), BuOAc (butyl acetate) (Ref 2), or poly car boxy lie acids, oxygenated poly carboxylic acids, halogen substituted poly carboxylic and oxygenated polycarboxylic acids, and the neutral and acid salts of these (Ref 4)... [Pg.412]

Fig. 9 The crystal structure of Li3Ru04 after stage 2 (left) (before the Li+ coordinates were refined) and after stage 3 (right) (the predicted crystal structure) where the large and small spheres are the Li+ and O2- ions, respectively, and the Ru5+ are within ruthenium-oxygen poly-hedra... Fig. 9 The crystal structure of Li3Ru04 after stage 2 (left) (before the Li+ coordinates were refined) and after stage 3 (right) (the predicted crystal structure) where the large and small spheres are the Li+ and O2- ions, respectively, and the Ru5+ are within ruthenium-oxygen poly-hedra...
The presence of oxygenated polyaromatic compounds in the product gas is inqjortant because they can act as dioxin sources. Aside for dibenzofuran, the analysis instrument was not calibrated for quantification of other oxygenated poly aromatic compounds. In the gas from LU-gasifier, dibenzofuran stands for between 0.5 and 1.5 %wt. of the total PAHs, The corresponding value for the V5mamo gasifier is considerably less and in most cases dibenzofuran does not exist in the gas. However to be able to study the effect of different parameters on behaviour of these conq>ounds the ratio between the peak area for oxygenated compound and peak area of the dibenzofuran were calculated. These calculated values are presented in Table 5. [Pg.545]

Rao, M.R., Venkatesham, U., and Venkateswarlu, Y. (1999b) Two new 19-oxygenated poly-hydroxysteroids from the soft coral Nephthea chabroli.J. Nat. Prod., 62, 1584—1585. [Pg.1392]

Poly(ethylene oxide). Although AH j is more than double that of polyethylene, the effect is offset by an even greater increase for AS j. The latter may be due to increased chain flexibility in the liquid caused by the regular insertion of ether oxygens along the chain backbone. [Pg.209]

This principle is illustrated in Figure 10 (45). Water adsorption at low pressures is markedly reduced on a poly(vinyhdene chloride)-based activated carbon after removal of surface oxygenated groups by degassing at 1000°C. Following this treatment, water adsorption is dominated by capillary condensation in mesopores, and the si2e of the adsorption-desorption hysteresis loop increases, because the pore volume previously occupied by water at the lower pressures now remains empty until the water pressure reaches pressures 0.3 to 0.4 times the vapor pressure) at which capillary condensation can occur. [Pg.277]

Antimony Oxide. The effect of antimony trioxide on the oxygen index of flexible poly(vinyl chloride) containing from 20 to 50 parts of plasticizer is shown in Figure 2. The flame resistance as measured by the oxygen index increases with the addition of antimony oxide until the oxygen index appears to reach a maximum at about 8 parts of Sb202. Further addition of antimony oxide does not have any increased beneficial effect. [Pg.459]

Fig. 2. The effect of antimony oxide on the oxygen index of poly(vinyl chloride) plasticized with dioctyl phthalate (DOP), (—... Fig. 2. The effect of antimony oxide on the oxygen index of poly(vinyl chloride) plasticized with dioctyl phthalate (DOP), (—...
Alumina Trihydrate. Alumina trihydrate is usually used as a secondary flame retardant in flexible PVC because of the high concentration needed to be effective. As a general rule the oxygen index of flexible poly(vinyl chloride) increases 1% for every 10% of alumina trihydrate added. The effect of alumina trihydrate on a flexible poly(vinyl chloride) formulation containing antimony oxide is shown in Figure 5. [Pg.461]

The limiting oxygen index of Tefzel as measured by the candle test (ASTM D2863) is 30%. Tefzel is rated 94 V-0 by Underwriters Laboratories, Inc., in their burning test classification for polymeric materials. As a fuel, it has a comparatively low rating. Its heat of combustion is 13.7 MJ/kg (32,500 kcal/kg) compared to 14.9 MJ /kg (35,000 kcal/kg) for poly(vinyHdene fluoride) and 46.5 MJ /kg (110,000 kcal/kg) for polyethylene. [Pg.370]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

Poly(vinylidene chloride). Poly(viayHdene chloride) [9002-85-1] (PVDC), most of which is produced by Dow Chemical, is best known in its saran or PVC-copolymerized form (see Vinylidene chloride and poly(VINYLIDENE chloride)). As solvent or emulsion coating, PVDC imparts high oxygen, fat, aroma, and water-vapor resistance to substrates such as ceUophane, oriented polypropylene, polyester, and nylon. [Pg.452]

Thermoform able sheet may be mono- or multilayer with the latter produced by lamination or coextmsion. Multilayers are employed to incorporate high oxygen-barrier materials between stmctural or high water-vapor barrier plastics. Both ethylene vinyl alcohol copolymers and poly(vinyhdene chloride) (less often) are used as high oxygen-barrier interior layers with polystyrene or polypropylene as the stmctural layers, and polyolefin on the exterior for sealing. [Pg.454]

The synthesis of a new class of inorganic polymers (21) with a backbone consisting of alternating sulfur(VI) and nitrogen atoms, and with variable alkyl or aryl substituents as well as a fixed oxygen substituent on sulfur, has recentiy been accompHshed (83—85). These polymers are stmcturaHy analogous to poly(alk5l/arylphosphazenes). [Pg.261]

Dialkyl peroxides have the stmctural formula R—OO—R/ where R and R are the same or different primary, secondary, or tertiary alkyl, cycloalkyl, and aralkyl hydrocarbon or hetero-substituted hydrocarbon radicals. Organomineral peroxides have the formulas R Q(OOR) and R QOOQR, where at least one of the peroxygens is bonded directly to the organo-substituted metal or metalloid, Q. Dialkyl peroxides include cyclic and bicycflc peroxides where the R and R groups are linked, eg, endoperoxides and derivatives of 1,2-dioxane. Also included are polymeric peroxides, which usually are called poly(alkylene peroxides) or alkylene—oxygen copolymers, and poly(organomineral peroxides) (44), where Q = As or Sb. [Pg.105]

Increasingly, plastics are being used as parenteral packaging (qv) materials. Plastics such as poly(vinyl chloride), polyethylene, and polypropylene are employed. However, plastics may contain various additives that could leach into the product, such as plasticizers (qv) and antioxidants. PermeabiUty of plastics to oxygen, carbon dioxide, and water vapor must be tested in the selection of plastic containers. Furthermore, the plastic should withstand sterilization. Flaking of plastic particles should not occur and clarity necessary for inspection should be present. [Pg.234]

Association Complexes. The unshared electron pairs of the ether oxygens, which give the polymer strong hydrogen bonding affinity, can also take part in association reactions with a variety of monomeric and polymeric electron acceptors (40,41). These include poly(acryhc acid), poly(methacryhc acid), copolymers of maleic and acryflc acids, tannic acid, naphthoHc and phenoHc compounds, as well as urea and thiourea (42—47). [Pg.342]


See other pages where Oxygen poly is mentioned: [Pg.436]    [Pg.89]    [Pg.412]    [Pg.470]    [Pg.226]    [Pg.6289]    [Pg.9007]    [Pg.295]    [Pg.263]    [Pg.534]    [Pg.436]    [Pg.89]    [Pg.412]    [Pg.470]    [Pg.226]    [Pg.6289]    [Pg.9007]    [Pg.295]    [Pg.263]    [Pg.534]    [Pg.80]    [Pg.321]    [Pg.539]    [Pg.187]    [Pg.1050]    [Pg.240]    [Pg.164]    [Pg.167]    [Pg.47]    [Pg.341]    [Pg.379]    [Pg.448]    [Pg.67]    [Pg.68]    [Pg.70]    [Pg.154]    [Pg.85]    [Pg.216]    [Pg.295]    [Pg.328]    [Pg.337]    [Pg.343]    [Pg.344]   
See also in sourсe #XX -- [ Pg.133 ]




SEARCH



© 2024 chempedia.info